Smart Pump: Best Practices

Nathan Mascolino, PE, LEED AP (BD+C)
C&I Energy Consultant
Thank you to our sponsors!
Agenda

• Smart pump incentives
• What makes a pump smart
• Why should we use them
• Optimizing smart pumps
• Avoiding common mistakes
Smart Pump Incentives

Small Pumps < 3 HP
Upstream rebates between $15 - $600

Large Pumps 3 – 30 HP
Structured custom rebate
Pump must meet program requirements
3 – 10HP $400/hp*
15 -30HP $300/hp*

Larger than 30 HP
Full custom contact Efficiency VT

* Requires Prop Pressure or Temp Diff operating mode
What Makes A Pump Smart?

• A pump capable of independent speed control based on hydronic system variables using an on board processor.
 – Includes ECM technology
 – Multiple operating modes

• No external sensors.
 – Saves money and time

• No external control signal.
 – Saves money and time
Why Should We Use Them?

• Future proof simple interface.
 – They can change and adapt with your building.

• Saves Money
 – Avoided cost
 – Electrical paybacks/ incentives

• Energy Benefits
 – When set up correctly there is enormous energy saving potential
Why Should We Use Them?

• Future proof simple interface
 – They can change and adapt with your building.

• Saves Money
 – Avoided cost
 – Electrical paybacks/ incentives

• Energy Benefits
 – **When set up correctly** there is enormous energy saving potential
Optimizing: Choose The Correct Mode

- Identify the hydronic system type:
 - Dynamic: A system with valves/pressure change,
 - Variable flow
 - Non-Dynamic: A system without pressure change
 - Constant flow
Optimizing: Choose The Correct Mode

There can be up to 7 modes to chose from.

• Non-Dynamic
 – Use: Constant Curve, Constant Temp*, or Diff Temp*

• Dynamic
 – Use: Proportional Pressure, Constant diff Pressure, or Automatic**

• Don’t Just “Set it and forget it”

*Temperature settings should be reserved for single zone systems.
**Use Caution when selecting Auto for a commercial systems.
Optimizing: Choose The Correct Mode

• **Do not** use fixed orifice balance devices in dynamic systems

2 way valve = Autoflow or PIC
Modulating = PIC

Pump
Avoiding Common Mistakes

Water Quality Air/ Dirt Separation

• The most common fault is a fouled sensor
 – Ferrous debris collects in magnetic pumps
• Solution: Install a coalescing Air/Dirt separator
 – Eliminates particles down to 30 microns.
 – Eliminates both entrained air and micro bubbles.
Air and Dirt Separators

Installation:

• Design for blowdown cleaning. Install a valve with hose connection and cap.
 • Do not install expansion tank or make up water to the bottom port.
 • On a new installation, clean monthly until water runs clear. Then flush every 6-12 months.

Connect expansion tank and water make just upstream of air/dirt unit

Full port ball valve with hose end connection and cap for blowdown
Thank you!

Nathan Mascolino, PE LEED AP(BD+C)
802-540-7779 (office)
802-598-4985 (cell)
nmascolino@veic.org
Avoiding Common Mistakes

Pump Orientation

• All wet rotor circulators need to be mounted with the shaft horizontal to the ground.
 – Some manufacturers require this for warranty.