

FEB 2020

HVAC 2020 A showcase of emerging systems

Matt Sargent Senior Energy Consultant Efficiency Vermont

Agenda

- Equipment types
- Controls
- Sizing and Selecting
- Installation tips
- Case Studies
- Code updates

Understand:

Emerging technologies in HVAC for new and existing construction Different distribution approaches Other major loads in the home

Goal:

Enable the design & construction community to fully understand the benefits and successfully implement these technologies as the market grows

Equipment Types

Mini split heat pumps Ducted heat pumps Air To Water heat pumps Ground Source heat pumps Advanced Pellet heating Distribution systems Domestic Hot Water systems Ventilation

Equipment Types

Mini split heat pumps

Ducted heat pumps Air To Water heat pumps Ground Source heat pumps Advanced Pellet heating Distribution systems Domestic Hot Water systems Ventilation

Single Zone Ductless Mini Split Heat Pumps

Single zone mini-split

Good news

- Customers love these things
- Cost effective
- Easy retrofit
- Best efficiency of all air sourced heat pumps
- Great low temp capability
- Indoor unit options

Challenges

- Non-distributed
- Comfort
- Sizing and selecting
- Zoning
- Systems integration

Single zone ductless mini split

- Up to HSPF 15, SEER 42, highest of all air source heat pumps
- Over 800 systems on NEEP list
- Up to about 30 KBtu at 5F
- Over 100% rated heating capacity at 5F
- Up to 8:1 turndown

Single zone mini split indoor options

- Compact Duct still considered mini split
- Ductless Floor looks like space heater
- Ductless Wall usually best listed performance
- Ceiling Cassettes variety of styles, don't install in attic

Equipment Types

Mini split heat pumps

Ducted heat pumps Air To Water heat pumps Ground Source heat pumps Advanced Pellet heating Distribution systems Ventilation Domestic Hot Water systems

Multi Zone Ductless Mini Split Heat Pumps

Multi zone ductless heat pumps

Good News

- Single outdoor unit serves multiple indoor units
- Reduced electric infrastructure
- Indoor options

Challenges

- Do not modulate as well as single zones
 - Performance and comfort implications
- Difficulty matching partial loads in small spaces
- Lower listed performance than single zones
- Still need load calcs,
 - block load
 - room by room
 - Sensible and latent

Multi zone ductless mini split

- Up to HSPF 12.5, SEER 19,
- 208 systems on NEEP list
- Up to about 60 KBtu at 5F
- Over 100% rated heating capacity at 5F
- Up to 4:1 turndown

Special Bulletin: Multi Split Heat Pumps

- Single zone systems are recommended over multi zone
- Never oversize multi zone heat pumps, size for partial load offset where possible
- Never size multi zone heat pumps based on number of zones

Some thoughts about load calculations and sizing heat pumps...

How to screw up load calculations

- Site location
- Orientation
- Area and sq ft / ton
- Mech system location
- Ventilation and dehumidification loads
- Envelope details, roof, glass, insulation, infiltration

Rhvac - Residential & Light Commerci EcoScience LLC Austin, TX 78704	al HVAC Loads						E	lite
Load Preview Report								
Scope	Net. Ton	fL² /Ton	Area	Sen Gain	Lat Gain	Net Gain	Sen	
Building	5.05	654	3,302	56,448	4,13	60,580	73.988	
System 1	3.43	574	1,972	38,833	2,372	41,205	49,524	-
Zone 1			1,972	38,833	2,372	41,205	49,524	
11-Living/Dining			523	18,579	767	19,346	23,646	
Load Preview Report								
Scope	Net Ton	ft.² /Ton	Area	Sen Gain	Lat Gain	Net Gain	Sen	1
Building	6.96	474	3,302	79,433	4,13	83,555	73,988	2
	6.04	077	1.070	00.00	0.070	00.004	10 204	

90 degree rotation in orientation

J

How to screw up load calculations

gain

- Site location
- Orientation
- Area and sq ft / ton
- Mech system location
- Ventilation and dehumidification loads
- Envelope details, roof, glass, insulation, infiltration

Rhvac - Residential & Light Comm EcoScience LLC Austin, TX 78704	ercial HVAC Loads		þ				Elite	
Load Preview Report								
Scope	Net. Ton	fL ² /Ton	Area	Sen Gain	Lat Gain	Net Gain	Sen Loss	
Building	5.05	654	3,302	56,448	4,13	60,580	13.988	
System 1	3.43	574	1,972	38,833	2,372	41,205	49,524	
Zone 1			1,972	38,833	2,372	41,205	49,524	90 degree rotation
11-Living Dining			523	18,579	767	19,346	23,646	in orientation
Load Preview Report	1							In onentation
Scope	Net Ton /	ft.2 Ton	Area	Sen Gain	Lat Gain	Net Gain	Sen Loss	
Building	6.96	474 3	3,302	79,433	4,13	83,565	73,988 2	
System 1	5.24	377	1,972	60,482	2,372	62,834	49,524 1	
90 de	gree ro	ota	ati	or	n ii	n c	orie	ntation added
22.98	5 Btu to) (CC	00	แท	D	loa	d. or 28% net

How to oversize a heat pump

or...

Screw it up

- Start with # of zones
- Don't worry about partial loads
- Only look at max capacity
- Use extreme design conditions (oversizing)
- Do all of the above

Get it right

- Start with load calcs
- Consider partial loads temps 50-80F = 40% hours ASHRAE design temp = 1% hours
- Consider max AND min capacity
- Use cold climate optimized equipment
- Use balance point control and back up system to meet design temp

One more thing about mini split heat pumps... they need to be cleaned.

Equipment Types

Mini split heat pumps Ducted heat pumps Air To Water heat pumps Ground Source heat pumps Advanced Pellet heating Distribution systems Ventilation Domestic Hot Water systems

Compact Ducted Mini Split Heat Pumps

Compact Ducted AKA "ducted mini split"

- Minimal ducting, low static pressure systems
- Good for adjacent rooms
- Slightly lower performance vs single zone mini split
- Connect to HRV? Yes or no?
- 30 Single Zone mini-split compact ducted systems currently on EVT QPL
- EVT rebates found on Mini Split QPL

Static pressure in a duct system

 Manuf. sells you the heating appliance, not the distribution system. Manuf. is not responsible for the design of the distribution system.

• Engineer designs the system, and the HVAC contractor installs the ducts according to engineer's design.

Rules of Thumb for Static pressure in a duct system

- As a rule of thumb, it's not a good idea to use rules of thumb for HVAC design. -John Semmelhack
- Ducts and fittings may need to be larger than you'd think.
- Duct runs should be short, with minimal fittings.
- ACCA Manual D is a good place to start.
- Compact ducted systems range in allowable static pressure from 0.2"-0.6" wg

Static Pressure Calculator

Efficiency Vermont

http://bry-air.com/resources/utilities/static-pressure-calculator/

Compact Ducted vs Multi Split

Images courtesy of Mike Duclos, DEAP Energy Group

Multi Zone vs Compact Ducted

Derformance Creek

Performance Specs

Heating / Cooling	Outdoor Dry Bulb	Indoor Dry Bulb	Unit	Min	Rated	Max
Heating	5°F	70°F	Btu/h	12,500	53	25,000
			kW	1.6	<i>2</i> 5	3.82
			COP	2.29	20	1.92
Heating	17°F	70°F	Btu/h	13,100	14,000	25,000
			kW	1.5	1.62	3.56
			COP	2.56	2.53	2.06
Heating 47°	47°F	70°F	Btu/h	11,400	25,000	25,000
			kW	0.93	1.72	1.72
			COP	3.59	4.26	4.26
Cooling	82°F	80°F	Btu/h	15,060	25	23,600
			kW	0.68	20	3.77
			COP	6.49	-	1.83
Cooling 9	95°F	80°F	Btu/h	12,600	22,000	23,600
			kW	0.53	1.63	3.77
			COP	6.97	3.96	1.83

Heating / Cooling	Outdoor Dry Bulb	Indoor Dry Bulb	Unit	Min	Rated	Max
Heating 5°F	5°F	70°F	Btu/h	3,800	-	12,000
			kW	0.25	856	. 1.22.
			COP	4.45	823	2.88
Heating 17°F	17°F	70°F	Btu/h	4,900	13, <mark>9</mark> 00	13,900
			kW	0.31	1.42	1.42
			COP	4.63	2.87	2.87
Heating 47°F	47°F	70°F	Btu/h	8,100	21,600	25,600
			kW	0.43	1.58	2.12
			COP	5.52	4.01	3.54
Cooling 82°F	82°F	80°F	Btu/h	6,700	0.55	18,900
			kW	0.25	122	1.1
			COP	7.85	-	5.04
Cooling 95°F	95°F	80°F	Btu/h	6,100	18,000	18,000
			kW	0.32	1.31	1.31
			COP	5.59	4.03	4.03

SUZ-KA18NA2 / SEZ-KD18NA Compact Duct

Other Ductwork Considerations

- Conditioned attic
- Dropped ceiling and soffits
- Closets
- Easier for new construction/remodel
- Condensate line, must have a plan
 - Assume it will be used for AC at some point even if customer states they won't. Insulate ducts?
- Return air, must have a plan
 - Undercut doors/louvers
 - Open return in hallway
- Limited duct length, low static pressure capability

Compact Ducted systems in the real world...

Equipment Types

Mini split heat pumps Ducted heat pumps Air To Water heat pumps Ground Source heat pumps Advanced Pellet heating Distribution systems Ventilation Domestic Hot Water systems

Centrally Ducted Heat Pumps

"whole house heat pump"

Centrally Ducted Heat Pumps

Centrally Ducted Heat Pumps

- Whole house option, using ducted distribution
- Provide heating and AC
- Replace central AC unit w/Heat Pump
- Keep existing furnace in place
 - Offset dirty and expensive heating fuels used by the furnace
- New construction option

Control Strategy

- Capacity Balance Point:
 - outdoor temperature at which the capacity of a heat pump equals the heating load in the house.
- Economic Balance Point:
 - Outdoor temperature at which cost to operate heat pump equals cost to operate backup heat

Balance Point, Capacity

Balance Point, economic

Control Strategy Goals

- Reduce emissions
 - Reduce Loads, Weatherize the Building
 - Install unit sized close to design heating load
 - Use capacity balance point
- Save money
 - Use economic balance point to operate system
 - Caution this will change with fuel prices
- Have this conversation with customer and show them how to set the balance point
- Use Dual Fuel capable thermostat

Centrally Ducted Heat pump in the real world...

Recent Installation

About this installation

- Controls are a big deal and are not necessarily easy to configure
 - Ecobee thermostat
 - Fan speed is still unresolved
- Coil is one size bigger, 4 ton heat pump with 5 ton coil
 - Allows better heat transfer

Equipment Types

Mini split heat pumps Ducted heat pumps Air To Water heat pumps Ground Source heat pumps Advanced Pellet heating Distribution systems Ventilation Domestic Hot Water systems

Benefits of ATW

- Comfortable
 - Zonal
 Fully Distributed
 Reduced stratification
 Quiet

Mono-bloc

Split Systems

 Refrigerant to water heat exchange is <u>inside</u>

Performance of ATW

- HSPF? SEER? NOPE!
- AHRI does not list/test
- No ENERGY STAR[®]
- IPLV Integrated Part Load Value
- COP Static points for varying outdoor and delivered water temperatures

COP Example

Supply				
Water	Ambient	Capacity		
Temp °F	Temp °F	BTU/hr	Watts	СОР
110	-5	37,500	3880	2.30
	17	44,800	3970	2.70
	47	60,580	4263	3.75
120	-5	38,500	4513	2.00
	17	46,440	5790	2.35
	47	66,480	5963	3.26
130	-5	40,425	5249	1.86
	17	48,762	5371	2.18
	47	69,804	6768	3.04

Performance of ATW

- Overall Very Good!
- Better with low supply water temperatures
- Similar to ductless, but does not account for distribution energy
- Good cold weather performance, but...
- We need a good metric and cold climate specification

Product Availability

- Aermec ANK
 - 2.5, 3 and 4 ton
- Arctic EVI
 - 2.5, 4 and 5 ton
- Chiltrix CX34
 - 3 ton
- Nordic ATW
 - 3, 4, 5, and 6 ton
- SpacePak Solstice
 - 4 ton

Buffer Tanks

- Small, not thermal storage (25-40 gal common)
- Prevents short-cycling
- Optimizes operation
- Not always needed (modulating systems)
- Adds cost/complexity
- Some DR opportunity

Glycol

- In Monobloc systems a must
- 2 strategies:
 - Whole system (expensive)
 - Primary loop with heat exchanger
- Slight efficiency reduction

Heat Exchangers

- Add flexibility to system design
- Reduces need for glycol, but adds a circulator
- Plate heat exchanger most common
- Sizing is important
- Some efficiency loss

ATW heat pump in the real world...

Low temp distribution

Low temp distribution

Utility Room

Outdoors

Measured Performance, COP @ outdoor temperature

Why they installed an Air to Water heat pump

Homeowner reflections

- Very happy with system, 1st heating season coming up
- Needed new \$1000+ electric panel (bummer)
- The whole project took longer and cost more than original estimates
- Need a fair bit of utility room space for split system, buffer tank and HP water heater
- Really glad they went with HP water heater

Equipment Types

Mini split heat pumps Ducted heat pumps Air To Water heat pumps Ground Source heat pumps Advanced Pellet heating Distribution systems Ventilation Domestic Hot Water systems

Ground Source Heat Pumps

Ground Source Heat Pumps

• Benefits:

- Can be sized to meet load, no back up needed
- Good COPs, efficient systems
- Performance not dependent on outdoor temps
- Can heat DHW
- Hydronic or Air distribution
- Tax Credits

Ground Source Heat Pumps Three Part Systems

1. Earth Connection Subsystem

• Heat source in winter, Heat sink in summer

2. Heat Pump Subsystem

• Removes heat/cool from ground, concentrates it

3. Heat Distribution System

• Distribute concentrated heat/cool throughout building

Ground Source Heat Pumps

Image stolen from the internet

GSHP in the real world...

VT Solar Net Zero Home

Residence & Office 4,300 sq ft heated Built in 2016

9.5 kW PV Array 11,000 kWh/YR

Geothermal Heating 5 ton unit Single well, 400' deep

Thin mass radiant floor & radiant walls

Design: L.W. Seddon Builder: Josh Walker

Geothermal System Overview

Simple Concept Meets Reality

VFD well pump changes pressure and water flow depending on demand

Using a single well for both domestic water and heating (dual mode) requires a flow control valve for HP

Geo heat pumps can get very unhappy – and freeze - if well flow goes just 2 GPM below normal

A freeze protection valve is required to dump about 15% of return flow (2 GPM) when temp falls to 34 degrees F – this allows fresh warmer water to enter well

Simple Concept Meets Reality

Radiant Wall Design

¹/₂" PEX with standard aluminum emission plates, ¹/₂" drywall finish

Large area required if radiant loop temp is to be kept low (90 F) for max HP efficiency

Use 3/8" drywall strips when studs can't be notched

Use interior walls when possible and install "back to back" radiant areas on room dividing walls

Document placement with pictures and dimensioned drawings!

Tubing installed into studs

Standard aluminum emission plates are 4" x 48".

8" on center vertical spacing minimum for 1/2" PEX bending radius

90 degree snap on elbows help form and protect end PEX bends

At 90 F water temperature, 20 SF wall area shown delivers 260 BTU/HR to room

2018 Measured Performance

Just the numbers, please

Heating Total kWh Consumed	6,353	kWh
DHW Total kWh Consumed	1,944	kWh
Heating Season Solar Gain (est)	3,042	kWh
Estimated Passive Solar Fraction	0.14	%
Total Geo Heat Delivered to Building	18,765	kWh
Total Heat per Sq Ft of heated area	4.36	kWh/SF
2018 Heating Degree Days (Montpelier)	8,295	HDD
Heat Energy per Degree Day per Sq Ft	0.53	Watts
Heating Cost (@ \$.15/kWh, actual cost \$0)	953	\$
DHW Cost (@ \$.15/kWh, actual cost \$0)	292	\$

Energy Use & Generation Balance

Key Takeaways

- Geothermal heating is really efficient COP of 3.5 or greater compared to COP of 2.5 for air source heat pumps (ASHPs).
- But Geo HPs are more expensive than ASHPs to install and require more attention to design details.
- Using a single well system that provides both domestic water and heat, the extra well cost is 200' of extra bore hole, about \$2,500.
- But the cost of piping and controls make geothermal about twice as expensive as ASHPs to install.
- The comfort level provided by Geo HPs and a radiant distribution system is much greater than ASHPs. No fans, air flow, and noise.
- If the goal is greatest comfort and lowest life cycle cost for heating a net zero home – geothermal systems make a lot of sense.

It Takes a Village....

A special thanks to all those that helped with advice, support, and helping hands:

Andy Shapiro Matt Sargent Lee Grutchfield Josh Walker

Jeff Gould

Chad Wendell

Energy Balance, LLC Efficiency Vermont Truex-Cullins Josh Walker Construction Gould Plumbing & Heating Wendell Electric

Ground Source Heat Pumps and Domestic Hot Water

Desuperheater

- Transfer excess heat from compressor to DHW tank
- Only works when GSHP is running, may not meet
 DHW loads at all times

• Full Demand

- Manufacturer installs separate heat exchanger
- Meets all household DWH needs
- Separate DHW system

– HPWH

Equipment Types

Mini split heat pumps Ducted heat pumps Air To Water heat pumps Ground Source heat pumps Advanced Pellet heating Distribution systems Ventilation Domestic Hot Water systems

Public Perception of "Biomass Heating"

Pellet Boiler Benefits

- Replace fossil fuel
- Use local, renewable fuel source
 - Stimulate local economy
- Low particulate
 0.032lb/MMBtu

Particulate emissions

Source: EPA Burnwise program

Thermal Storage for Heating

- Output from boiler is often higher than current heating load
- Allows the heating system to meet intermittent loads without firing the boiler, improving performance and longevity
- Prevents boiler short cycling during partial load conditions
- Able to capture residual heat at boiler shutdown
- Can also provide mass to stabilize domestic hot water production

Equipment Types

Mini split heat pumps Ducted heat pumps Air To Water heat pumps Ground Source heat pumps Advanced Pellet heating Distribution systems Ventilation Domestic Hot Water systems

...a brief plug for low temp Hydronic Distribution Systems

Hydronics are a great way to move heat

- Water over 30X more efficient than air
- Negligible distribution loss compared to ducts

Hydronics are:

- Comfortable
- Fully distributed
- Easily zoned
- Steady temperatures
- No blowing air
- Quiet
- Less dust
- Warm surfaces

Slide stolen from Mike Simons, Abode Energy

Low Temp Distribution

Keeping the costs down

- Limit zoning to the basics
- Use panel rads w/TRVs

Fewer, larger panel rads w/TRVs

- Site built manifolds w/PEX fittings
 - Home run piping
- Design for low temp hydronics up front
 - Retrofits are expensive, future proof your building

Equipment Types

Mini split heat pumps Ducted heat pumps Air To Water heat pumps Ground Source heat pumps Advanced Pellet heating Distribution systems Ventilation Domestic Hot Water systems

Ventilation

- Always part of a new or rehabbed home
- Fresh air for people
 - Controlled
 - Clean
 - Comfortable

Vermont energy code updates for 2020

- Balanced Ventilation required for Stretch Code (all act 250 developments and towns that have adopted stretch code)
- Earn Points with efficient ventilation systems
 - Tight homes (<2 ACH50) + 70% SRE (HRV) or 65% SRE (ERV) = 3 points
 - Very tight homes + 80% SRE (HRV) or 75% SRE (ERV) = 4 points

Ventilation Bottom Line

- **ALL** homes need ventilation
- Match your strategy to your house
- Pick your equipment carefully
- Proper Duct Design
- Continuous operation
- Train the homeowner

Equipment Types

Mini split heat pumps Ducted heat pumps Air To Water heat pumps Ground Source heat pumps Advanced Pellet heating Distribution systems Ventilation Domestic Hot Water systems

Water Heating

Drain Water Heat Recovery

- Preheat cold water supply to DHW
- 40-60% recovery efficiency
- Reduce energy for DHW
- Improve capacity of water heater

© 2009 RenewABILITY Energy Inc.

Equal Flow Plumbing

CSA B55.1 performance testing

Best Practice when feasible

Not just for new construction projects

Drain Water Heat Recovery in the real world...

Water Heater Replacement

Water Heater Replacement

Drain Water Heat Recovery

Drain Water Heat Recovery

Getting that other drain

Equal Flow Plumbing

Combined DWHR and HPWH

Water Heating Bottom Line

- Be deliberate about the water heating strategy
 - It can be the biggest load in the house
- Heat pump water heaters may need cooling and noise mitigation strategies
- Water conservation and heat recovery are just as important as high efficiency water heating
- Reduce plumbing core in new construction

Thank You

Matt Sargent Efficiency Vermont 802-540-7619 msargent@veic.org

