

06 FEBRUARY 2020

Fossil Fuel Free at Last: Air-to-Water Heat Pump and Ventilation Retrofit Case Study

Brian Just

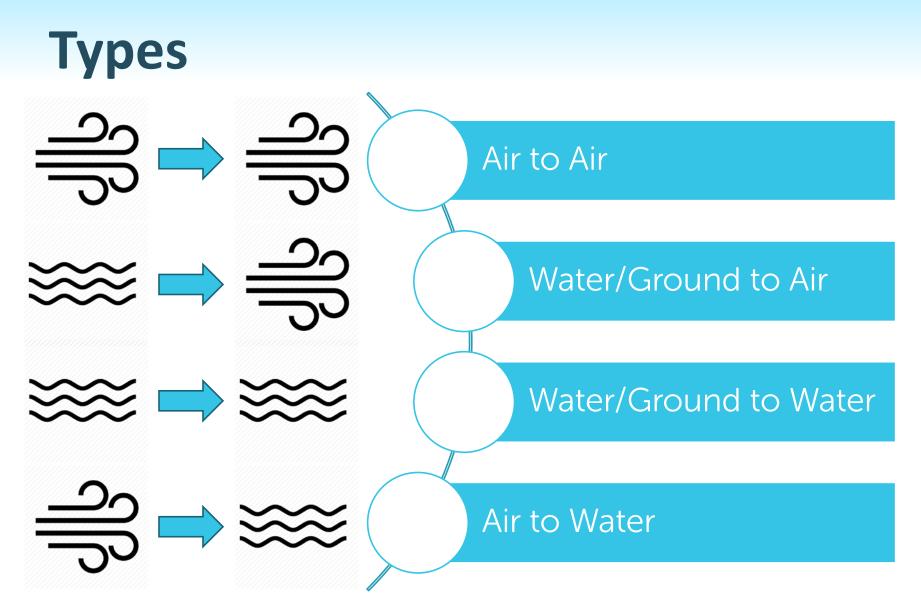
Learning objectives

- Learn how air-to-water heat pumps are functioning in New England's Climate Zone 6
- Identify 5 key non-energy benefits that can help move the needle on HVAC retrofit projects
- Understand the basics of how to install an air-towater heat pump with the benefit of an opensource design and detailed photographs
- Learn the key design features and options for low-temperature distribution, including how to set up a new home for near-seamless retrofittability in the future at minimal cost

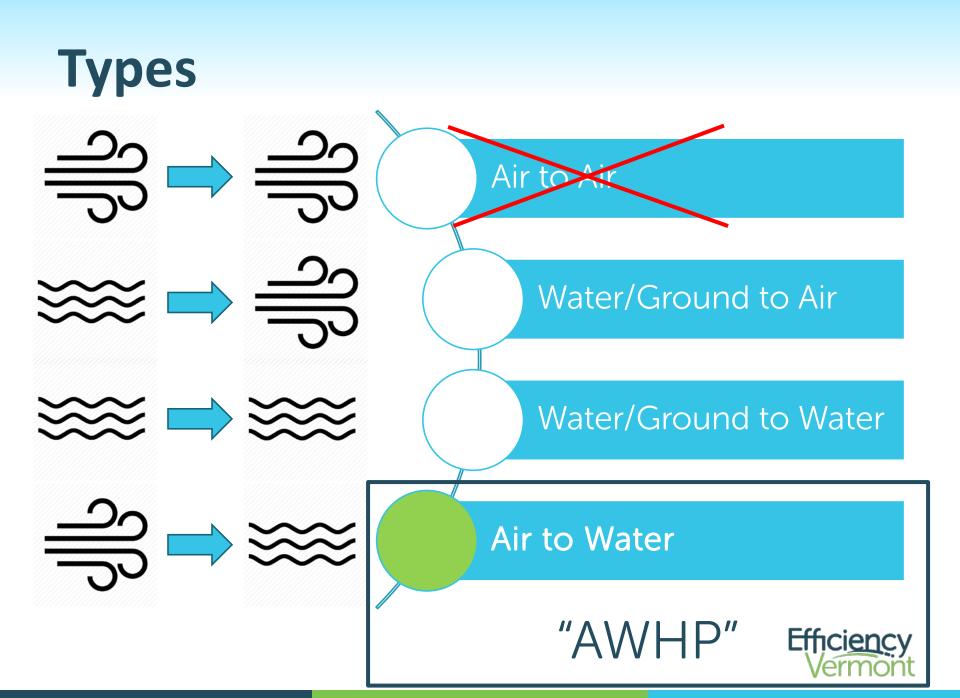
Outline

- Goals
- Heat pump basics
- Decisions 101
- Design
- Installation
- Results
- Closing thoughts

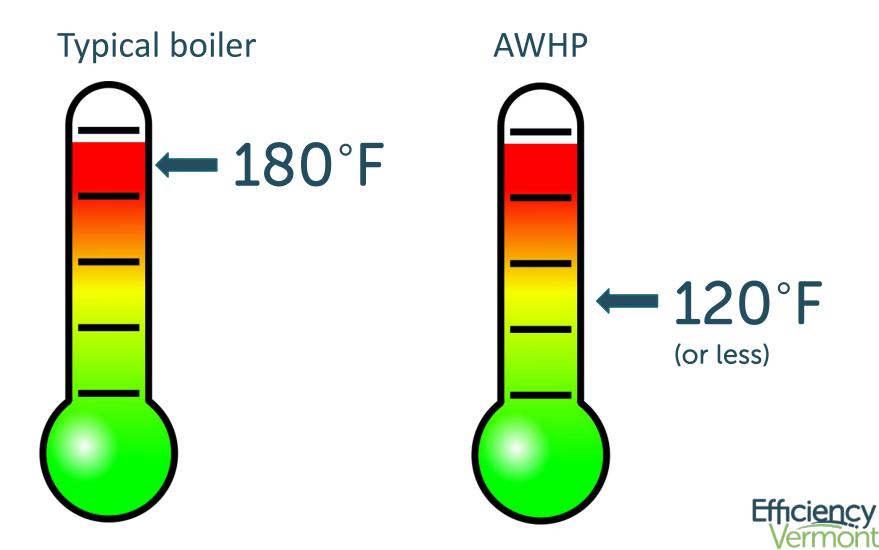
Goals


Photo: https://www.space.com/39234-best-astronaut-earth-from-space-photos-2017.html

Not (necessarily) a top goal:


Photo: https://www.science101.com/dirty-money-handling-cash-cards-damaging-health/

Heat pump basics



Operating temperatures

Heat pump basics

Intake

Heat pump basics

Intake

Exhaust

Advantages of hydronics

- Distribution efficiency
 - − Furnace → 30,000 btuh / 750W = 40 btuh/W
 - Boiler → 30,000 btuh / 75W = 400 btuh/W
 - No duct losses (if they leak, you know it)
 - Given volume of water can hold 3500x more heat than air
 - ½" tube compared to large round / rectangular ducts

Advantages of hydronics

- Distribution efficiency
 - − Furnace → 30,000 btuh / 750W = 40 btuh/W
 - − Boiler → 30,000 btuh / 75W = 400 btuh/W
 - No duct losses (if they leak, you know it)
 - Given volume of water can hold 3500x more heat than air
 - ½" tube compared to large round / rectangular ducts
- No moving air
 - Quiet
 - With minisplits, can blow cold air during defrost cycle
 - Less movement of dust and allergens

Advantages of hydronics

- Distribution efficiency
 - − Furnace → 30,000 btuh / 750W = 40 btuh/W
 - Boiler → 30,000 btuh / 75W = 400 btuh/W
 - No duct losses (if they leak, you know it)
 - Given volume of water can hold 3500x more heat than air
 - ½" tube compared to large round / rectangular ducts
- No moving air
 - Quiet
 - With minisplits, can blow cold air during defrost cycle
 - Less movement of dust and allergens
- Placement and comfort
 - Put where you want them (e.g. below windows)
 - Invisible if you want (floors, walls, ceilings)
 - Highly tune-able to individual rooms and spaces, even those with very low loads

AWHP installation pros and cons

Pros

- Contractor network skilled at hydronics
- Boilers in 60% of VT homes
- AWHPs common in developed world

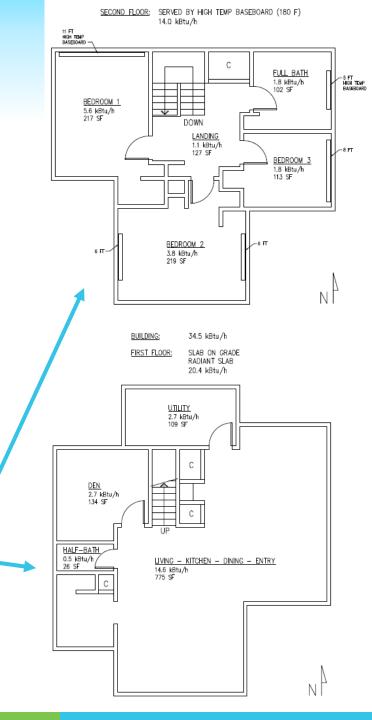
AWHP installation pros and cons

Pros

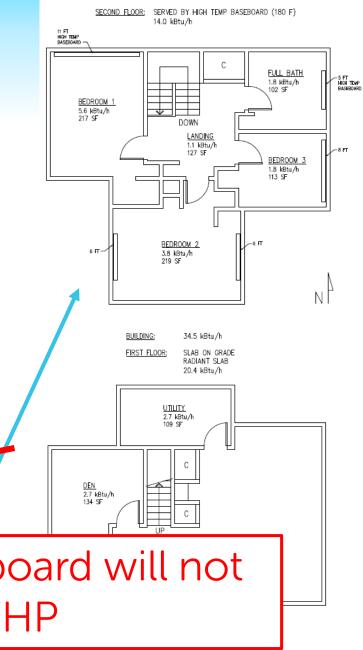
- Contractor network skilled at hydronics
- Boilers in 60% of VT homes
- AWHPs common in developed world

Cons

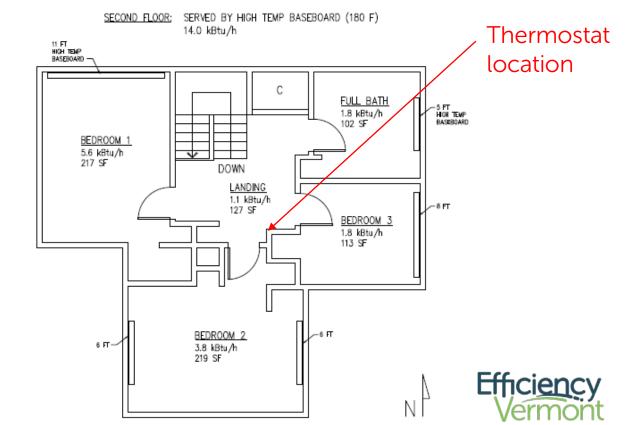
- In most cases, not a drop-in replacement
- Distribution system must be (made) compatible
 - Need surface area!
 - Existing baseboard and radiators may only put out 25-30% of the heat (180F vs. 120F)



Decisions 101


Basics

- 2 stories
- Slab-on-grade (no basement)
- 2100 square feet
- No cooling
- Heating provided by 17-yr-old propane boiler
 - Level 2: Baseboard in 4 rooms
 - Level 1: Radiant slab
 - Indirect tank for hot water



Basics

- 2 stories
- Slab-on-grade (no basement)
- 2100 square feet
- No cooling
- Heating provided by 17-yr-old propane boiler
 - Level 2: Baseboard in 4 rooms
 - Indirect tank Work with AWHP

• Upstairs is freezing or sweltering due to poor design

- Upstairs is freezing or sweltering due to poor design
- Boiler represents carbon monoxide hazard

- Upstairs is freezing or sweltering due to poor design
- Boiler represents carbon monoxide hazard
- Poor distribution of underfloor slab heat

- Upstairs is freezing or sweltering due to poor design
- Boiler represents carbon monoxide hazard
- Poor distribution of underfloor slab heat
- Mechanical room is sauna in summer due to water heat

- Upstairs is freezing or sweltering due to poor design
- Boiler represents carbon monoxide hazard
- Poor distribution of underfloor slab heat
- Mechanical room is sauna in summer due to water heat
- And more!

Why air-to-water?

Option 1: (Passive)

- Let this one die
- Emergency installation of replacement boiler

Before:

Why air-to-water?

Option 1: (Passive)

- Let this one die
- Emergency installation of replacement boiler
- Option 2: (Active)
- Install multiple 1/1 minisplits (not a multizone) throughout home
- Abandon hydronic infrastructure

Indoor Unit (Evaporator)

Outoor Unit (Condensor)

After:

Photos: EFG

Why air-to-water?

Option 1: (Passive)

- Let this one die
- Emergency installation of replacement boiler
- **Option 2: (Active)**
- Install multiple 1/1 minisplits (not a multizone) throughout home
- Abandon hydronic infrastructure Option 3: (Active)
- AWHP or hybrid system
- Utilize and enhance hydronic infrastructure

Manufacturer	Model #	Model/Series Name	System Type	Nominal Capacity	COP @ A5W110*	Product Incentive
Aermec	ANK030H	ANK	Mono-bloc	2.5	1.85	\$2,500
	ANK030HP			2.5	1.85	\$2,500
	ANK030HA			2.5	1.85	\$2,500
	ANK045H			3	1.95	\$3,000
	ANK045HP			3	1.95	\$3,000
	ANK045HA			3	1.95	\$3,000
[ANK050H			4	2.07	\$4,000
	ANK050HP			4	2.07	\$4,000
	ANK050HA			4	2.07	\$4,000
	020A	EVI - Cold Climate	Mono-bloc	2.5	2.26	\$2,500
Arctic Heat Pumps	040A			4	2.18	\$4,000
	060A	1		5	2.26	\$5,000
Chiltrix	CX34-ODU	CX34	Mono-bloc	3	2	\$3,000
	ATW-45-HACW	ATW Series	Split	3	1.8*	\$3,000
Nordic	ATW-55-HACW			4	1.8*	\$4,000
	ATW-65-HACW			5	1.8*	\$5,000
	ATW-75-HACW	1		6	1.8*	\$6,000
SpacePak	LAHP48A4	Solstice Extreme	Mono-bloc	4	2.55	\$4,000

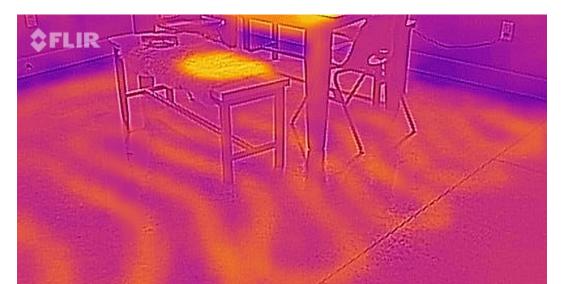
* Equivalent value. Equipment automatically reduces outlet water temperature to 105F when ambient conditions drop to 5F

Trajectory

In addition to goals around (no) fossil fuels, health/safety, and big-picture efficiency,

- Enhance comfort, including room-by-room "tuneability"
- Retain infrastructure (radiant slab)
- Align project with other work in home

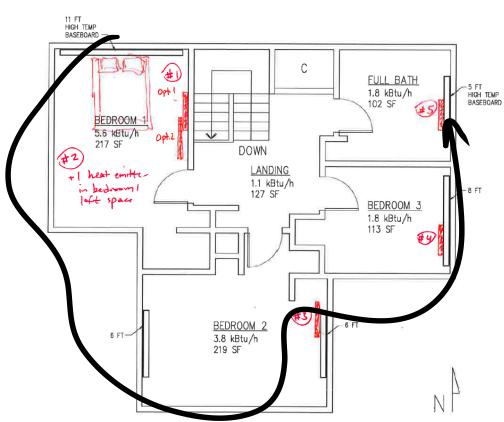
Opportunity breakdown


3 spaces to deal with

- 1. First floor / Zone 1
- 2. Second floor / Zone 2
- 3. Mechanical room

1. First floor opportunities

• Unbalanced heating loop lengths

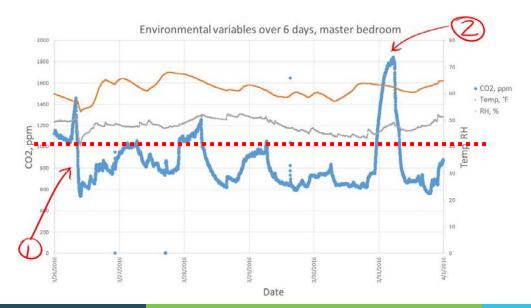

#	Location	SF served	Details	Length, est.	
1	Kitchen + dining	200	12" spacing	250'	
2	Dining + living perimeter	120		320'	
3	Living + lower landing	300	12" spacing	380'	
4	Entry + hall to den	80	12" spacing	140'	
5	Den + half-bath	160	12" and 8" mix	220'	

1. First floor opportunities

- Unbalanced heating loop lengths
- No intentional fresh air delivered within home

• Series heating loop, no room-by-room control

SECOND FLOOR: SERVED BY HIGH TEMP BASEBOARD (180 F)


- Series heating loop, no room-by-room control
- Requires 180F water

- Series heating loop, no room-by-room control
- Requires 180F water
- Thermostat in nonsensical location

- Series heating loop, no room-by-room control
- Requires 180F water
- Thermostat in nonsensical location
- No fresh air provided to bedrooms

3. Mechanical room opportunities

- Overheats all summer long due to waste heat from boiler heating indirect water tank
- Underutilized space because of temperature instability

1/3. Choose the AWHP

AWHP choices

Manufacturer	Configuration	Available?
Aermec	Mono-bloc	Yes
Arctic	Mono-bloc	Yes
Chiltrix	Mono-bloc	Yes
Nordic	Split (condenser <i>inside</i>)	Yes
SpacePak	Mono-bloc	Yes
SpacePak split	Split (condenser <i>inside</i>)	?
NIBE (Sweden) / Enertech	Split (condenser <i>outside</i>)	?
Dimplex (Germany) / Taco	Split (condenser <i>outside</i>)	?
Stiebel Eltron	Split (condenser <i>outside</i>)	?
Sanden Eco Runo*	Mono-bloc	?

* Uses CO₂ as refrigerant

AWHP selection

Manufacturer Available? Configuration Aermec Mono-bloc Yes Mono-bloc Arctic Yes Chiltrix Mono-bloc Yes Split (condenser inside) Nordic Yes SpacePak Mono-bloc Yes Split (condenser *inside*) SpacePak split ? Split (condenser outside) NIBE (Sweden) / Enertech ? Dimplex (Germany) / Taco Split (condenser outside) ? Split (condenser outside) Stiebel Eltron ? Sanden Eco Runo* Mono-bloc ?

* Uses CO₂ as refrigerant

AWHP selection

Manufacturer	Configuration	Available?
Aermec	Mono-bloc	Yes
Arctic	Mono-bloc	Yes
Chiltrix	Mono-bloc	Yes
Nordic	Split (condenser <i>inside</i>)	Yes
SpacePak	Mono-bloc	Yes
SpacePak split	Split (condenser <i>inside</i>)	2020?
NIBE (Sweden) / Enertech	Split (condenser <i>outside</i>)	2020?
Dimplex (Germany) / Taco	Split (condenser <i>outside</i>)	2020?
Stiebel Eltron	Split (condenser <i>outside</i>)	2020?
Sanden Eco Runo*	Mono-bloc	?

* Uses CO_2 as refrigerant

More on these later...

Sizing

Heating design load 32.3 kBtu/h (-6F / 68F) At 5F 🗲 28.1 kBtu/h

	Performance Tables ATW-65-HACW-P-1T R410a, 60 Hz, ZPS51K5E-PFV												
_				ELECTRICAL INDOOR									
		Outdoor Air Temperature		Heat Absorbed (Btu/hr)	Compressor Current (A)	Input Power (W)	ELT	Condensing Temperature		LLT	Delta T	He ating (Btu/hr)	COPH
		-5°F	-16°F	7,600	20.7	4730	102°F	110°F			3°F	23,400	1.45
	-	5°F	-8°F	13,600	19.3	4410	101°F	109°F			4°F	28,300	1.88
		15°F	1°F	19,200	17.8	4100	100°F	109°F			5°F	32,900	2.35
		25°E	0°E	24 900	17 1	2050	100°E	100°E			E°E	27 900	2.94

Performance Tables ATW-55-HACW-P-1T

R410a, 60 Hz, ZPS40K5E-PFV

OUTDOOR ELECTRICAL			INDOOR								
Outdoor Air Temperature	Evaporating Temperature	Heat Absorbed (Btu/hr)	Compressor Current (A)	Input Power (W)	ELT	Condensing Temperature		LLT	Delta T	Heating (Btu/hr)	COPH
-5°F	-16°F	6,810	16.7	3870	102°F	110°F			3°F	19,800	1.50
5°F	-8°F	11,800	15.7	3670	101°F	109°F			4°F	24,100	1.93
15°F	1°F	16,200	14.8	3470	100°F	109°F			5°F	27,800	2.35
25°F	0°E	21 400	14 0	3200	100°F	109°F			5°F	32 400	2.89

Options

Purchased add-ons:

- 15" leg kit (\$100)
- Isolation pad for indoor unit (\$83)
- Compressor sound jacket (\$53)

Plus:

- 70 gallon buffer tank with 9 kW backup
- 9 kW = 30.7 kBtu/h

2/3. Choose heat emitters

Distribution

- Slab works well with 120F water
- Existing baseboard upstairs does not
 - ➔ without redesign, cannot effectively heat with outside temperatures below 45F

Low temperature / high output baseboard

- Looks like normal baseboard but works with lower water temperatures
- Examples:
 - Mestek Synergy
 - Smith HE2 Heating Ed
 - Smith HE3 Silent Fin

Low temperature / high output baseboard

Panel radiators

- Common worldwide
- Many manufacturers
- Room-by-room control
- No power needed

Image: <u>https://www.bosch-</u> <u>thermotechnology.us/us/en/ocs/residential/buderus-panel-</u> <u>radiators-1098983-p/</u>

Low temperature / high output baseboard

Panel radiators

Panel radiators + fan assist

- Higher output
- Needs 24V

Images: <u>https://runtalnorthamerica.com/pdf</u> <u>s/Runtal_NEO_Brochure.pdf</u>

Low temperature / high output baseboard

Panel radiators

Panel radiators + fan assist

Site-built radiant floors, walls, or ceilings

Photo credits: John Siegenthaler

- Low temperature / high output baseboard
- **Panel radiators**
- Panel radiators + fan assist
- Site-built radiant floors, walls, or ceilings
- Fan coil units

Image: http://spacepak.com/ThinWall.html

Low temperature / high output baseboard

Panel radiators

Panel radiators + fan assist

Site-built radiant floors, walls, or ceilings

Fan coil units

Existing baseboard and copper piping

3/3. Come up with a design that pulls it all together

1. Need to run new distribution upstairs

- 1. Need to run new distribution upstairs
- 2. ... which helps justify putting in a ventilation system at the same time

- 1. Need to run new distribution upstairs
- 2. ... which helps justify putting in a ventilation system at the same time
- ... which makes it logical* to do it all at the same time as a full bathroom (only one in the house) gut renovation

* More on this later

- 1. Need to run new distribution upstairs
- 2. ... which helps justify putting in a ventilation system at the same time
- ... which makes it logical* to do it all at the same time as a full bathroom (only one in the house) gut renovation
- 4. And then there's the question of what to do about hot water for domestic use

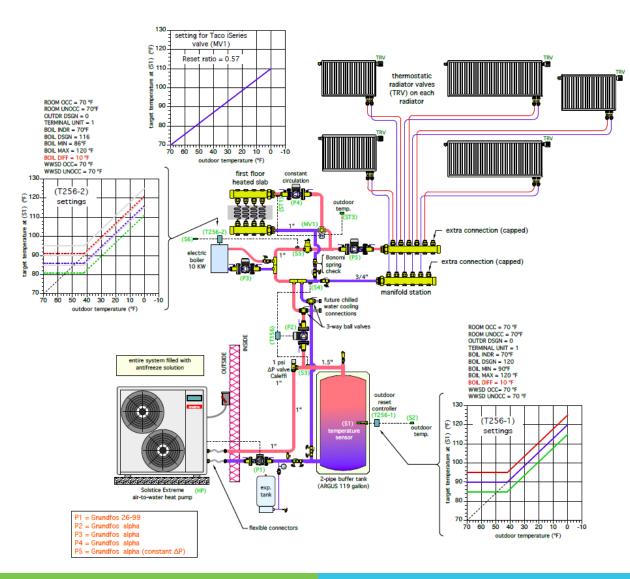
My design ground rules

- 1. Keep it simple so that it is:
 - Affordable
 - Repeatable
 - Bucks the conception of hydronic systems

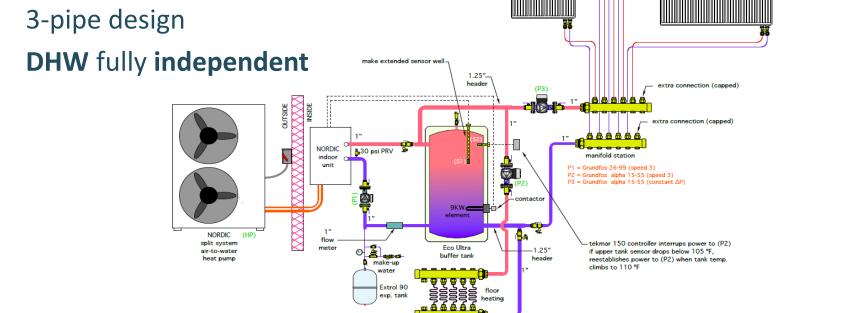
Image: John Siegenthaler

My design ground rules

- 1. Keep it simple so that it is:
 - Affordable
 - Repeatable
 - Bucks the conception of hydronic systems
- 2. Consult the pros

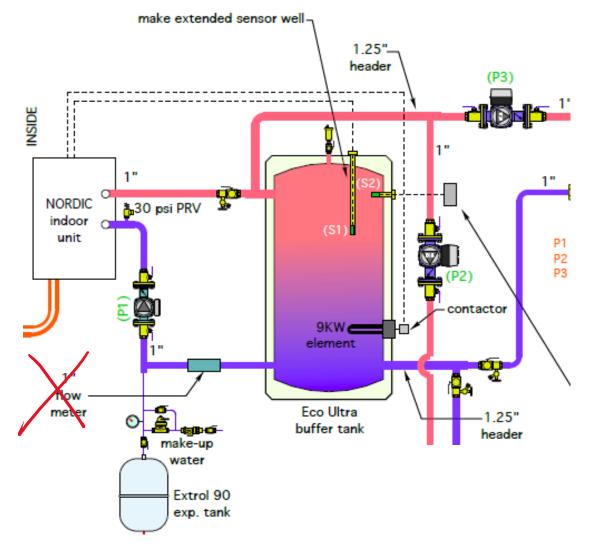


Design evolution


Starting point (circa 2016-17)

- Mono-bloc system filled with antifreeze solution
- Auxiliary boiler for subzero temps and backup
- Provision for future cooling
- 5 circulator pumps and 2 reset controllers
- No DHW or DHW preheat
- 2-pipe design

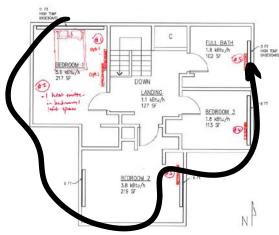
Final design (2-3 iterations later)


- **Split** system (no antifreeze needed)
- No added outdoor reset control
- No zone valves
- 3 circulator pumps
- Backup without auxiliary boiler
- 3-pipe design

thermostatic radiator valves

(TRV) on each radiator

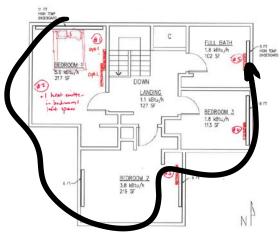
Zooming in...



Critical: energy modeling

Zone / Room	Design heat load	Output of existing baseboard, 180F*
2 / Bed 1	5600 btu/hr	3700 btu/hr (-1900)
2 / Bed 2	3800 btu/hr	3700 btu/hr (-100)
2 / Bed 3	1800 btu/hr	2200 btu/hr (+400)
2 / Bath	1800 btu/hr	1300 btu/hr <mark>(-500)</mark>

* Assumes 1 gpm and John Siegenthaler water temp vs. output chart, series loop begins in Bed 1 and continues in order shown in table



Critical: energy modeling

Zone / Room	Design heat load	Output of existing baseboard, 180F*	Output of existing baseboard, 120F*
2 / Bed 1	5600 btu/hr	3700 btu/hr (-1900)	1000 btu/hr (-4600)
2 / Bed 2	3800 btu/hr	3700 btu/hr (-100)	1000 btu/hr (-2800)
2 / Bed 3	1800 btu/hr	2200 btu/hr (+400)	700 btu/hr (-1100)
2 / Bath	1800 btu/hr	1300 btu/hr <mark>(-500)</mark>	900 btu/hr (-900)

* Assumes 1 gpm and John Siegenthaler water temp vs. output chart, series loop begins in Bed 1 and continues in order shown in table

Radiator right-sizing

Zone / Room	Design heat load	180F (Match manufacturer literature)
2 / Bed 1	5600 btu/hr	<u>12" x 71" (1-plate)</u>
2 / Bed 2	3800 btu/hr	<u>12" x 59" (1-plate)</u>
2 / Bed 3	1800 btu/hr	<u>12" x 24" (1-plate)</u>
2 / Bath	1800 btu/hr	<u>12" x 24" (1-plate)</u>

* Assumes 1 gpm, each room is a homerun to the mechanical room supply manifold

Radiator right-sizing

Zone / Room	Design heat load	180F (Match manufacturer literature)	120F
2 / Bed 1	5600 btu/hr	<u>12 x 71" (1-plate)</u>	20" x 91" (3-plate) 12" x 24" (2-plate)
2 / Bed 2	3800 btu/hr	<u>12" x 59" (1-plate)</u>	24" x 64" (3-plate)
2 / Bed 3	1800 btu/hr	<u>12" x 24" (1-plate)</u>	24" x 36" (2-plate)
2 / Bath	1800 btu/hr	<u>12" x 24" (1-plate)</u>	24" x 36" (2-plate)

* Assumes 1 gpm, each room is a homerun to the mechanical room supply manifold

If you did this, the system would be 3-4x undersized!

Radiator right-sizing

Zone / Room	Design heat load	180F (Match manufacturer literature)			120F
2 / Bed 1	5600 btu/hr	Model 22	4" Deep	BTU @	20" x 91" (3-plate)
		(H X W)	PART NUMBER	180° F*	12" x 24" (2-plate)
2 / Bed 2	3800 btu/hr	12" x 16"	7750100604	1573	24" x 64" (3-plate)
	5000 Dtu/11	12" x 24"	7750100606	2359	
2 / Bed 3	1800 btu/hr	12" x 36"	7750100609	2539	24" x 36" (2-plate)
Z / Deu J	1000 Dtu/11	12" x 48"	7750100612	4719	24 x 30 (2-plate)
2 / Dath	1000 bt	12" x 59"	7750100615	6291	24" x 36" (2-plate)
2 / Bath	1800 btu/hr	12" x 71"	7750100618	7078	24 x 56 (2-plate)
			7750102604	23.1	
* Assumes 1 gpm, each room is a homerun to the		20" x 24"	7750102606	3511	

20" x 20" x 20" x 20" x 20" x 24" x

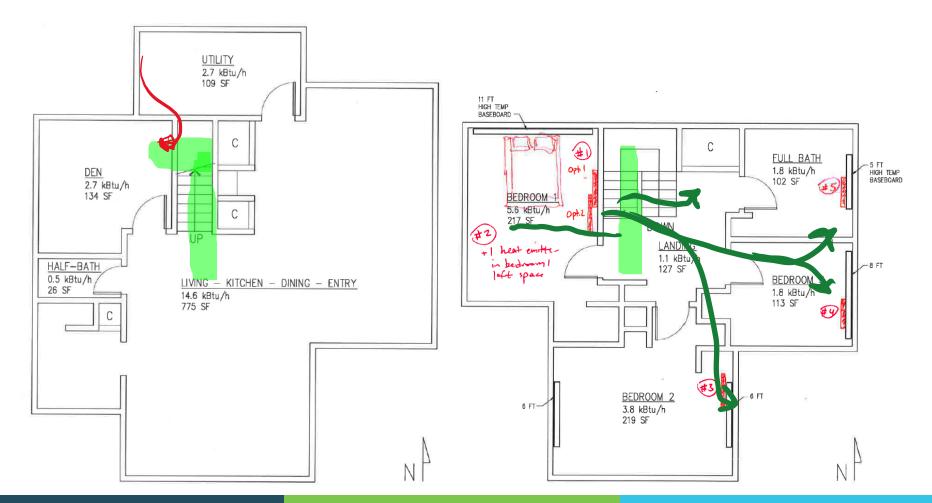
24" x

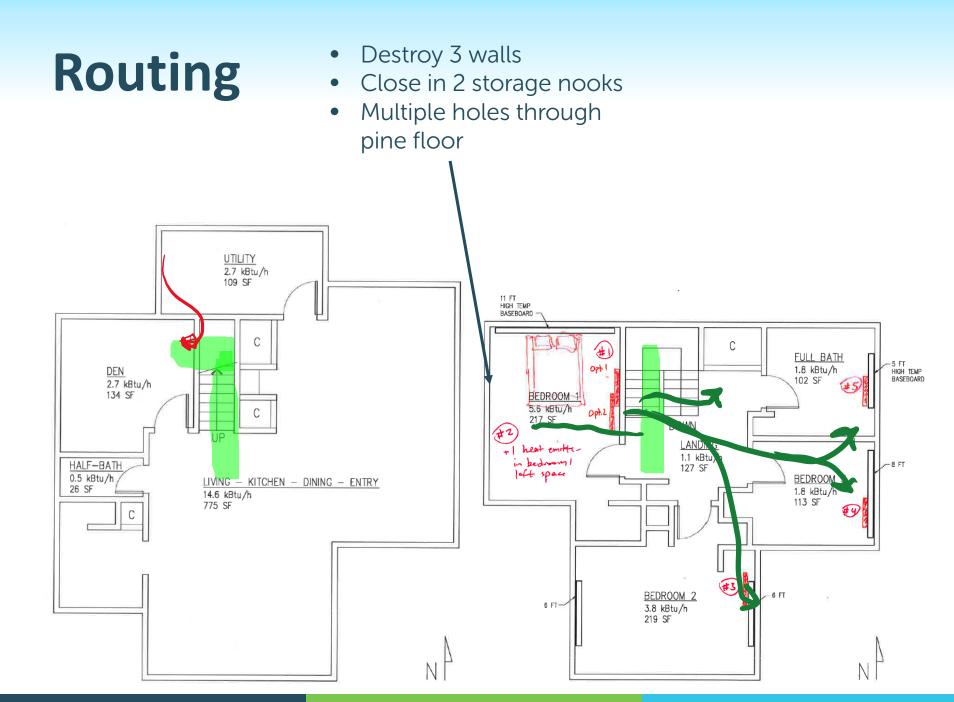
24" x

Listed output = 6104 Adj. output = 1856 (30% of listed)

48"	7750100612	4719	24
59"	7750100615	6291	24
71"	7750100618	7078	24
16"	7750102604	23 1	
24"	7750102606	3511	
36"	7750102609	5266	
48"	7750102612	7022	
59"	7750102615	8777	
71"	7750102618	10,533	
16"	7/50103604	2713	
24"	7750103606	4069	
36"	7750103609	6104	

Installation

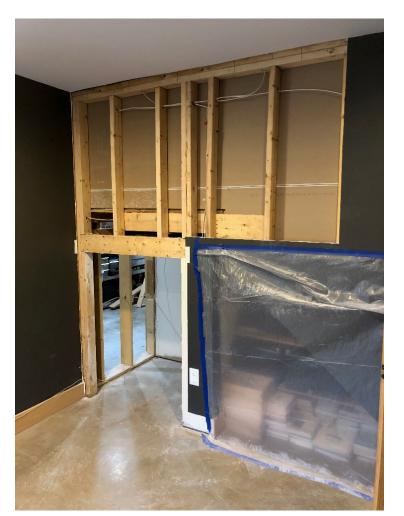

If there's one thing you take away today:


In 99% of existing homes, putting in a AWHP is NOT simply a boiler swap

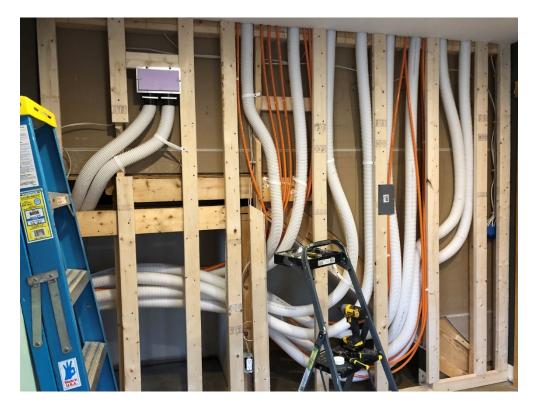


Routing

Need to get homeruns (1/2" PERT tubing <u>pairs</u>) from the mechanical room to EACH of 5 panel radiator locations


Photos – Phase I (2018)

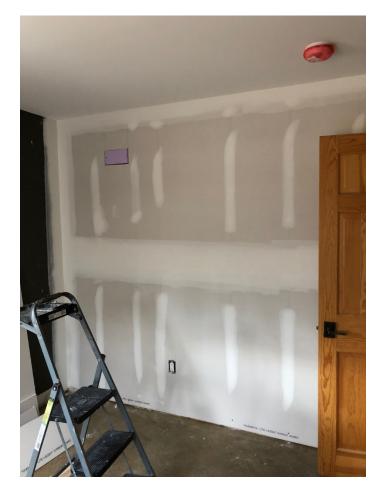
Office – 1st floor


Before...

The hope was to stop here... Connection to mech. room

Office – 1st floor

Surprise! Whole wall needs to be padded out (due to structural beam above)


...and lost triangular storage area due to joist locations / real estate for tubing

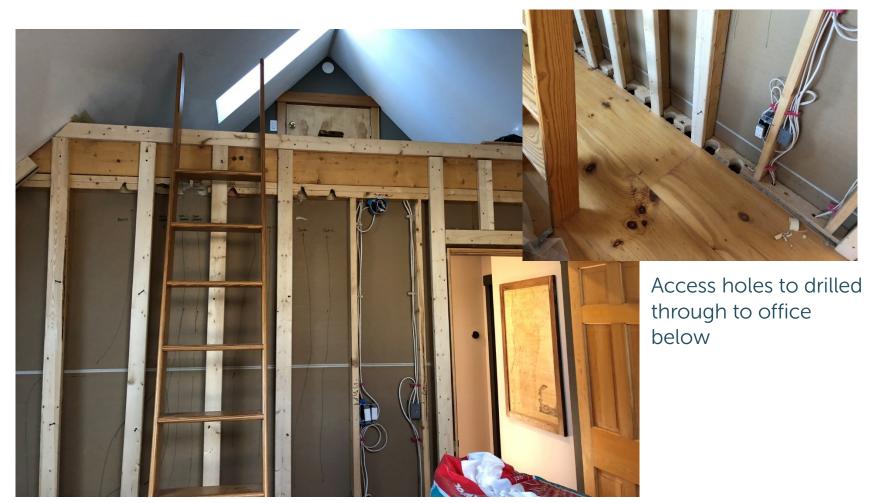
White tube = ventilation system Orange = PERT tubing for heating

Office – 1st floor

Note the fresh air ventilation register (top left)

Old baseboard

Exploratory work



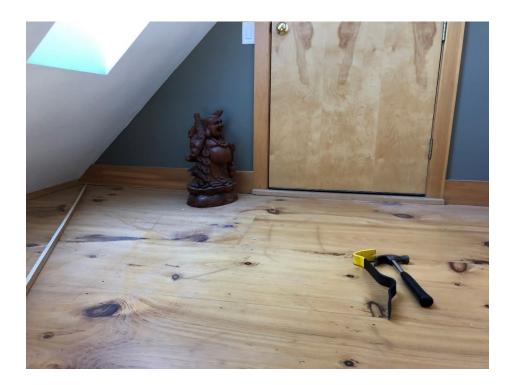
Hope was to stop here... (1st floor office wall is below)

...but a structural beam is in the way...

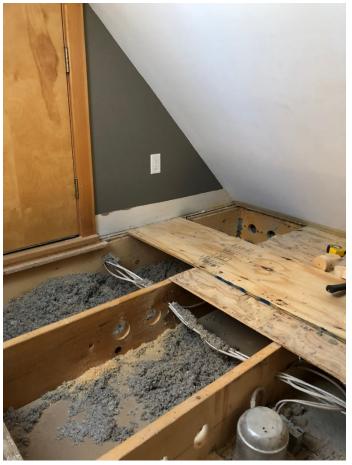
Entire wall needed to be padded out (loft space is above)

Everything's in! (with PERT clips and tube strapping to keep as tidy as realistic)

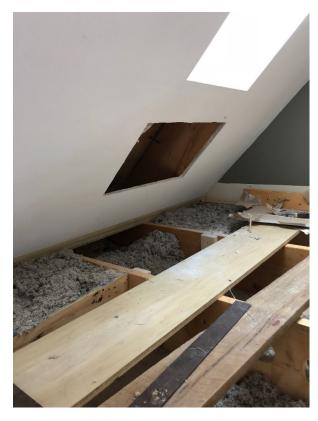
Floor joist direction meant getting to the window wall wasn't too bad...



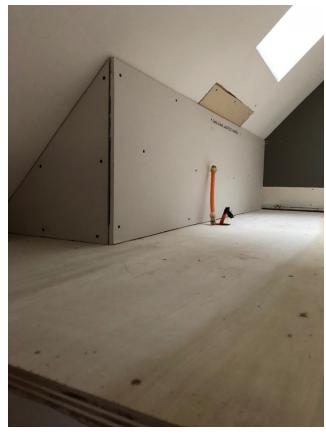
Although blocking halfway across necessitated creativity and small hands



Glued-down pine flooring was a nightmare to remove



Holes to feed 2 bedrooms and bath (south bedroom at mid-right)



Discover reason for damaged always-frosty skylight: No insulation in this cavity!

Add blocking to minimize future cellulose spillage

Kneewall to support panel radiator

New subfloor and locally-milled maple floor

Attic



Before...

Attic

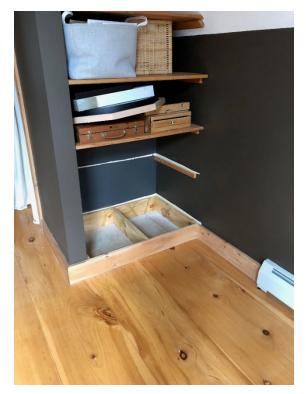
All lines in! Air sealed partitions and holes

Ceiling ventilation return for bathroom below

90s installed for dropdowns to east bedroom and bathroom PERT

Attic

Repack cellulose, add rockwool Blocking plus 1.5" polyiso and plywood

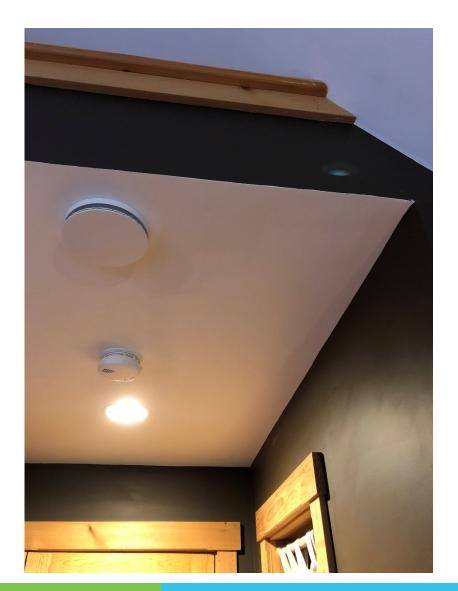

R-23 of mineral wool + 1.5" polyiso (R-10) above all lines New deck raised floor 1.5"

South bedroom – 2nd floor

Before...

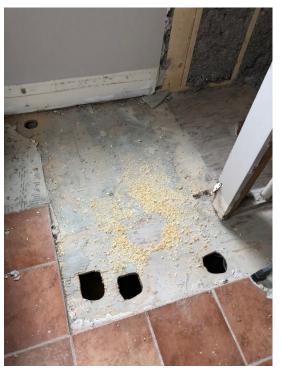
A tricky route

South bedroom – 2nd floor

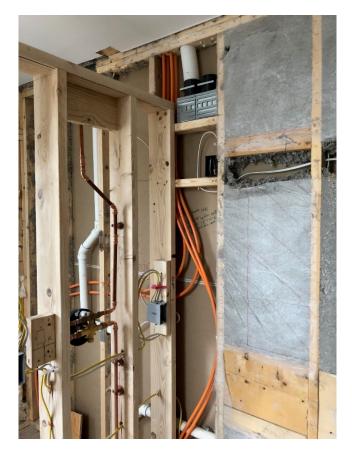


Use ceiling and closet wall / floor to access exterior wall Cut path for PERT tubing

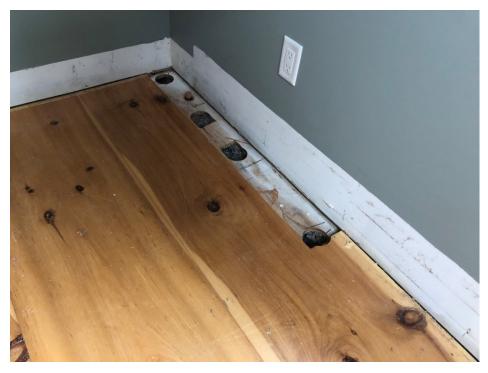
South bedroom – 2nd floor


Before...

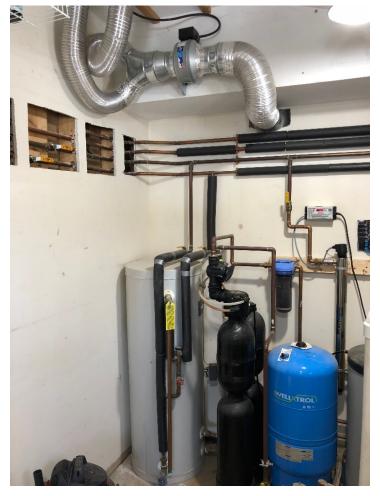
Common wall with adjacent bedroom


Creating a PERT pathway to exterior wall

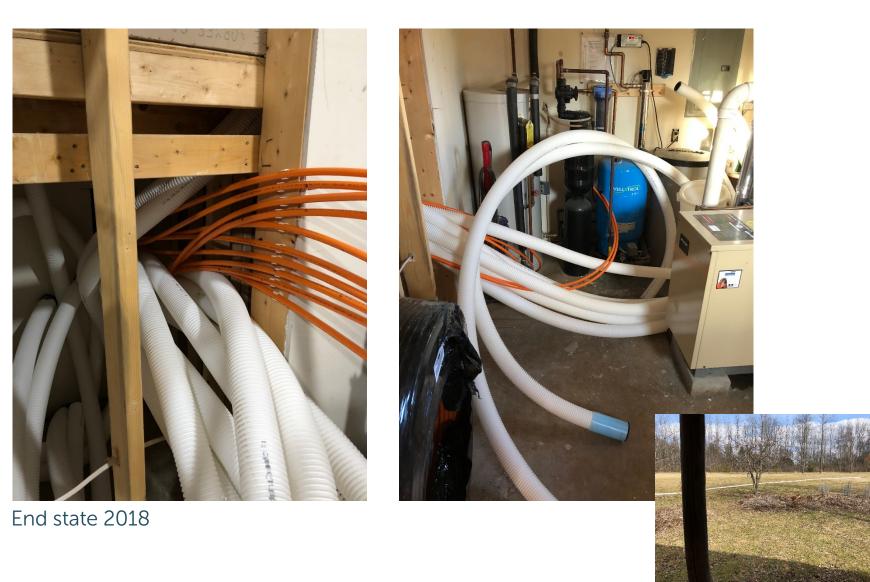
Putting it all together

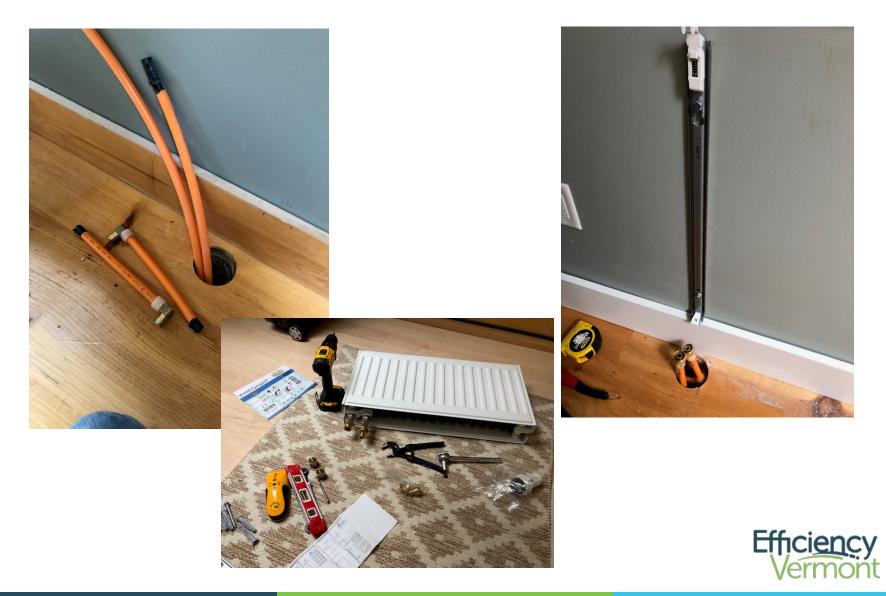


Reconstruction

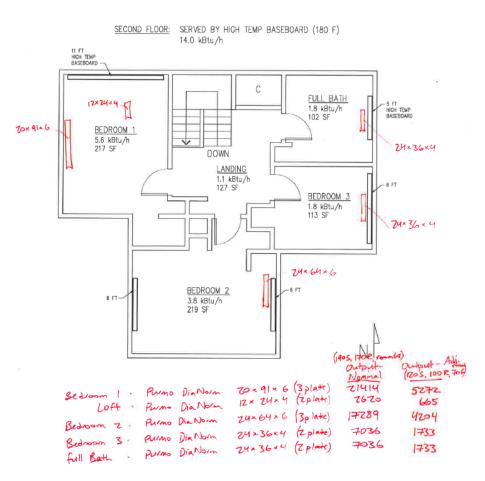

Baseboard out and access for PERT in

Mechanical room – 1st floor


Exploratory holes


Opening wall to office space

Mechanical room – 1st floor



A month later...

2018 summary

- 650' of PERT
- 400' of ComfoTube (for ventilation)
- Destruction tally:
 - 6 walls
 - 1 ceiling
 - 1 floor (complete), plus 4 that needed repair

2018 summary, cont.

- Lines pressure tested and mapped for future
- No upstairs heat for winter of 2018-19
- Nail plates

Photos – Phase II (2019)

Mechanical room

Efficiency Vermont

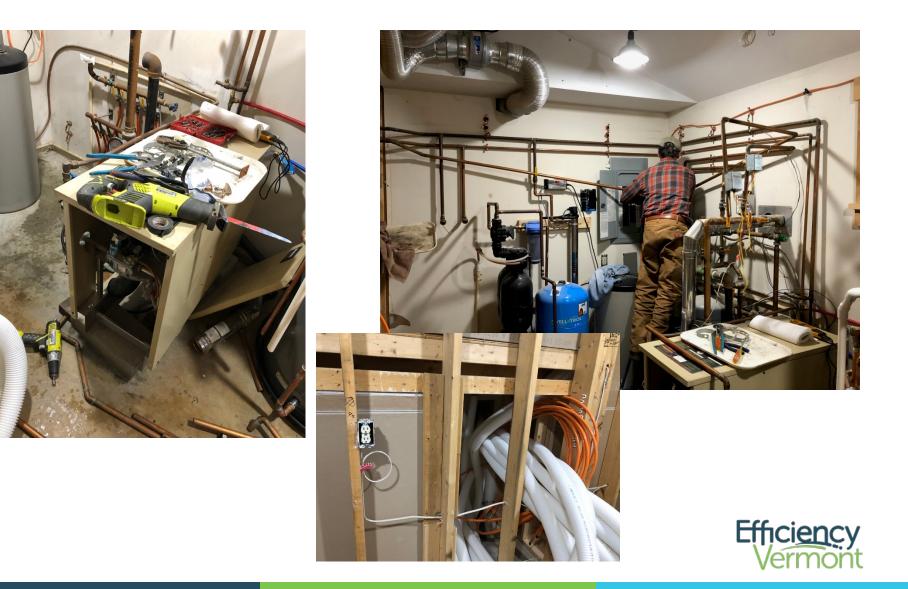
State, previous 10 months

Mechanical room

Status, previous 10 months

Propane out

Heat pump water heater in

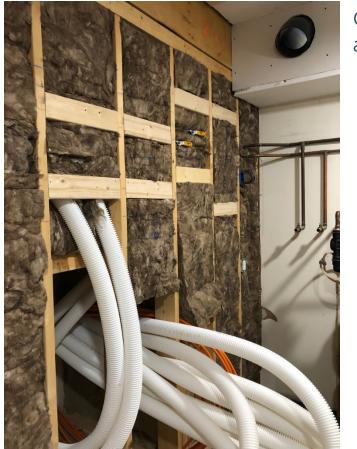


Electrical upgrades needed

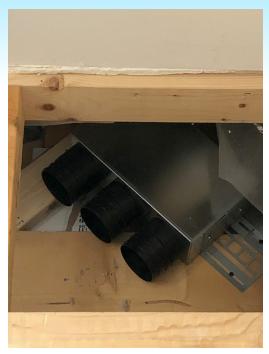
Cleaning up the mess

Plug holes

Boiler venting



Old exhaust-only ventilation



Ventilation system

Outdoor air intake

Kitchen exhaust

Mechanical room exhaust

Ventilation system

Ventilator hung and initial tubing connections

Operational

AWHP, buffer tank, and distribution



Floor zone manifold

Before...

After

Upstairs manifold

Outdoors

Results

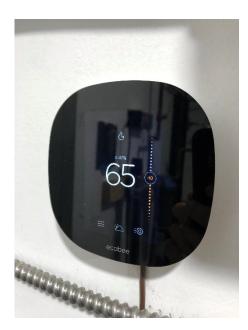
Final product

Great swap!

Master / Loft

South bedroom

East bedroom / Bathroom



House operation

Thermostats

Thermostatic radiator valves (TRVs)

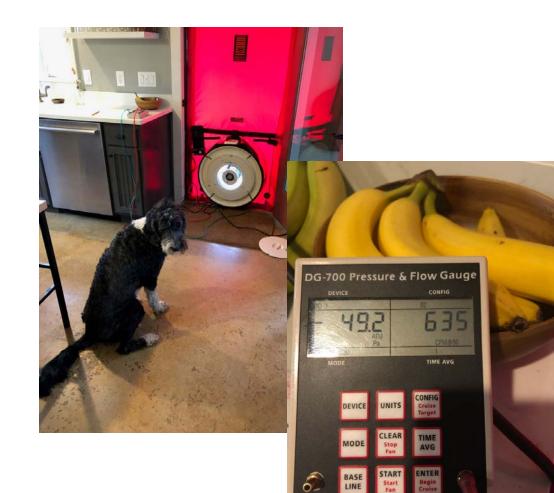
Valve position	Reference temperature	Recommended setting for	
*	6°C	Frost protection	43 °F
0-1	12°C	Cellar, stairs	
1	15°C	Unoccupied room, laundry, recess	59 °F
2	17°C	Entrance hall, corridor	62.6 °F
2-3	18°C	Bedroom	64.4 °F
3	19-20°C	Kitchen	66-68 °F
3-4	20-21°C	Lounge, child's bedroom	68-70 °F
4	22°C	Bathroom	71.6 °F
5	max.	Valve completely open	

Ref: <u>https://www.energuide.be/en/questions-answers/to-which-temperature-do-the-digits-or-scales-on-a-thermostatic-radiator-valve-correspond/1524/</u>

Thermostat controls (initial)

- Zone 1 (slab)
 - 68F daytime
 - 67F nighttime
- Zone 2 (upstairs)
 - TStat set to 80F (so circulator pump runs 24/7)
 - TRVs set very low in unused rooms; Grundfos ECM pump adapts to demand; daytime typ. 10-15W
 - Master bedroom has programmable TRV (AA battery) that heats the room to 68F from 6:30pm-6:30am
 - Low-mass system doesn't take too long to warm

HPWH setting



Data: non-AWHP

Air sealing = 100 cfm improvement

INPUT

Energy models, before and after

	2015	2020
HERS	76	55
Airtightness	763 cfm50	628 cfm50
Design heat load	33.1 kbtu/hr	31.1 kbtu/hr
Heat \$/yr	\$1549	\$1363 (-\$186/yr)
Total \$/yr	\$3511	\$2506 (-\$1005/yr)

Per REM/Rate v15.7.1

This project:

- AWHP replaces propane boiler
- Heat pump water heater replaces propane indirect tank
- High efficiency balanced ventilation replaces exhaust-only system
- Air sealing

Other improvements:

- 100% LEDs
- ENERGY STAR appliances
- Low flow DHW fixtures
- EPA 2020-compliant woodstove
- Previous air sealing

Energy models, before and after

	2015	2019
HERS	76	55
Airtightness	763 cfm50	628 cfm50
Design heat load	33.1 kbtu/hr	31.1 kbtu/hr
Heat \$/yr	\$1549	\$1363 (-\$186/yr)
Total \$/yr	\$3511	\$2506 (-\$1005/yr)

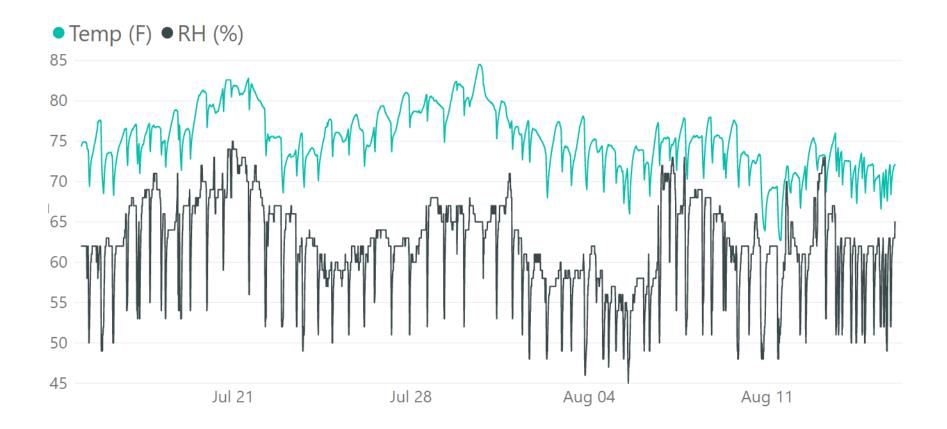
Per RFM/Rate v15.7.1

This project:

- Heat pump water hea
- High efficiency balanc
- Air sealing

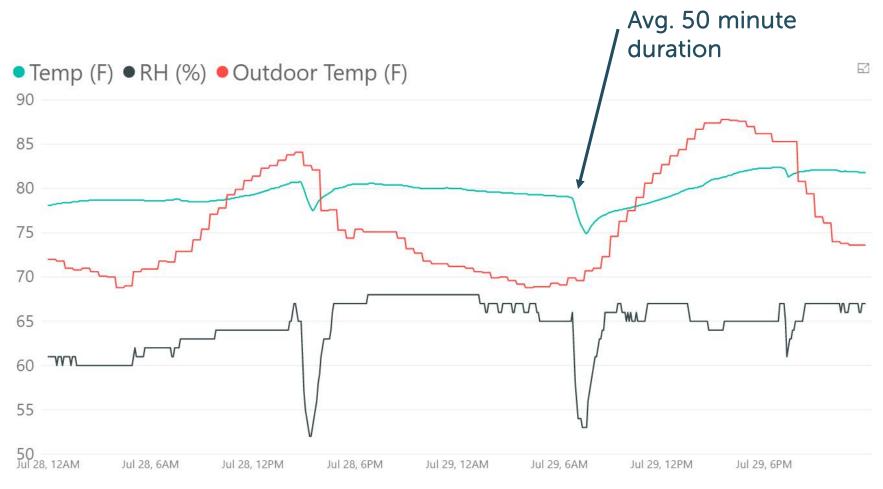
Other improvements:

- 100% LEDs
- **ENERGY STAR appliances**
- Low flow DHW fixtures
- EPA 2020-compliant woodstove
- Previous air sealing

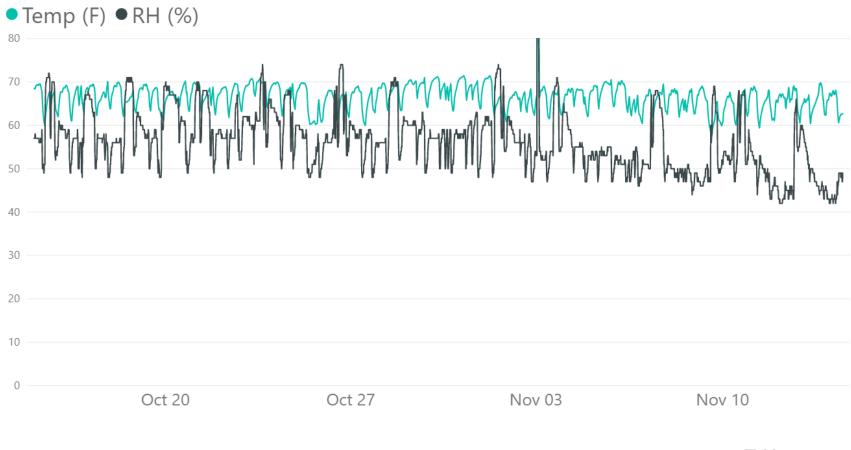

- AWHP replaces propa AWHP upgrade only:

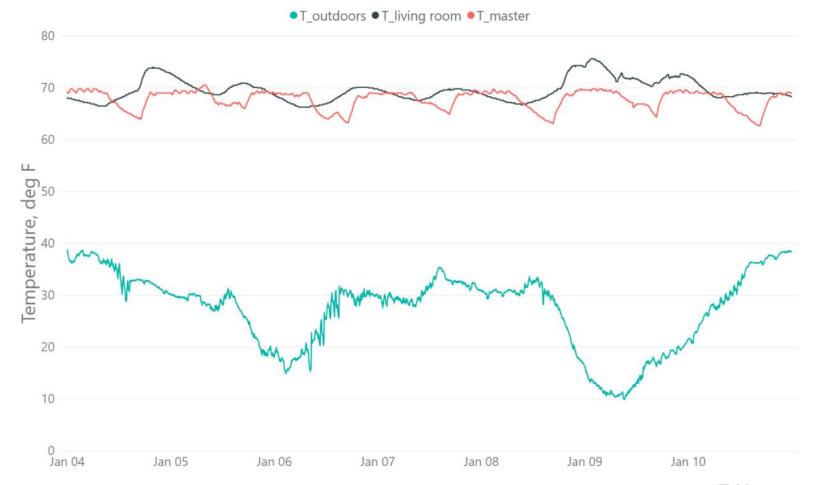
1 HERS point

- \$260/year total energy

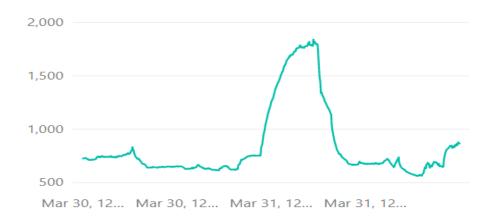

Mechanical room temperature Summer, Jul 15 – Aug 15

Mechanical room temperature


Summer, 1 day (Jul 28-29)

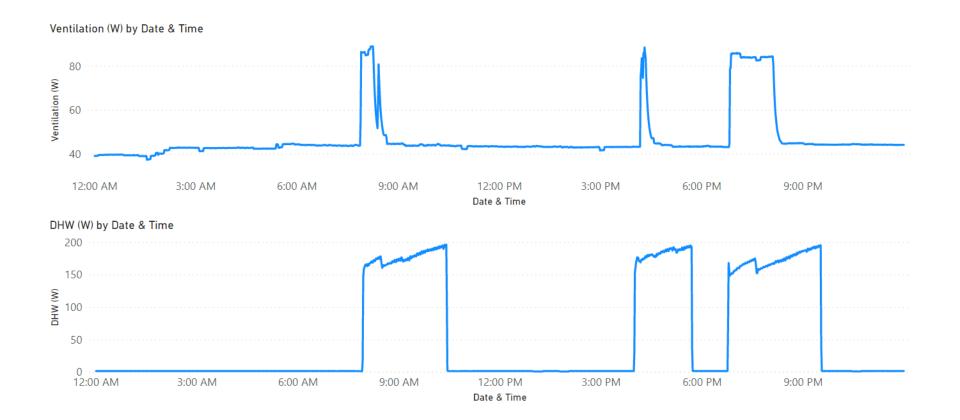

Mechanical room temperature

Autumn/Winter, Oct 14 – Nov 14



Temperatures, 1 week in January

Efficiency Vermont

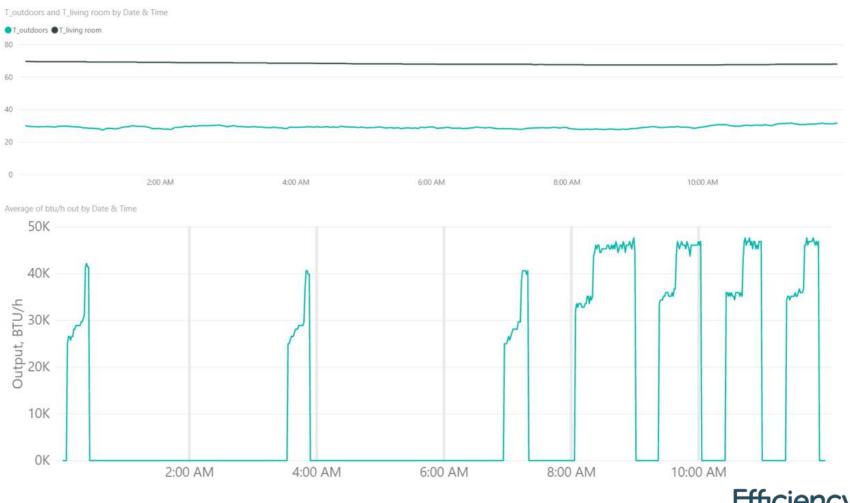

CO₂ in bedroom, before/after

Ventilation and HPWH electricity Autumn/Winter, 1 day (Nov 1)

Data: AWHP output and temperatures

Notes and disclaimer

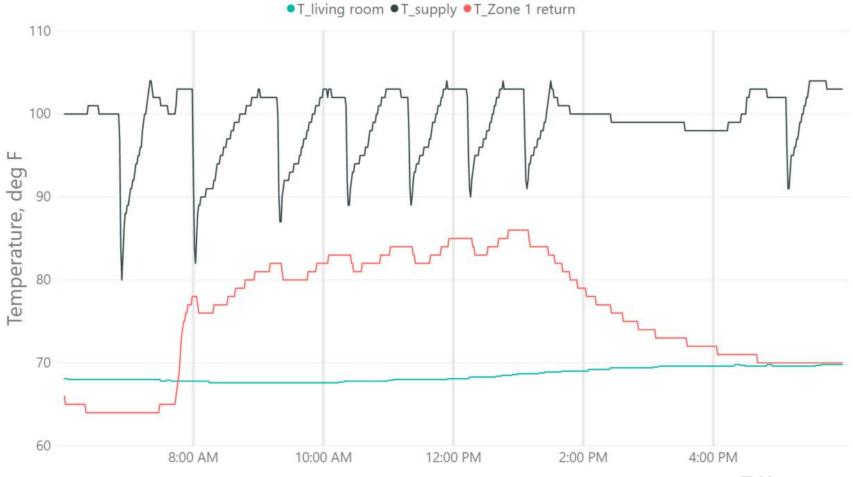
Home operation:


- Wood burning when temp drops to 10F or below, about ½ cord burned this winter
- Zone 2 (upstairs) still uses AWHP during wood burning
- Backup resistance heat (9 kW) has not fired up yet

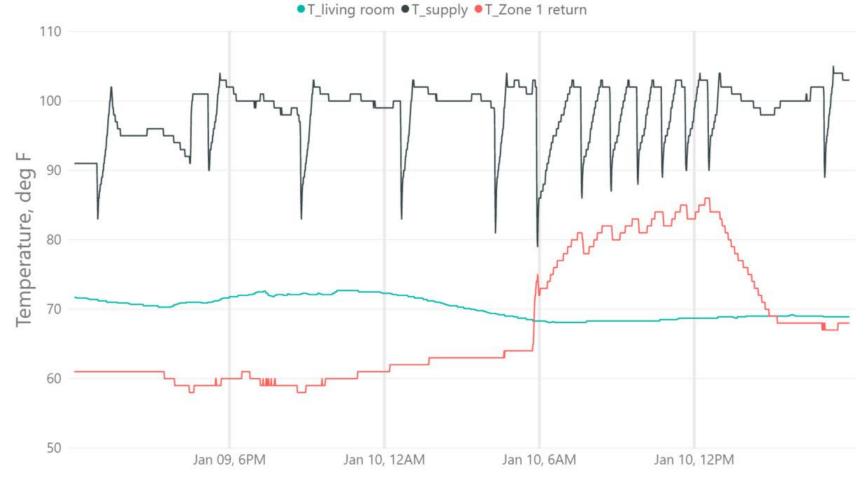
Data notes:

- Nov 1 2019 Jan 22 2020
- Flow rate used is 15.55 gpm, based on averaged data (single speed)
- Slight misalignment in 1-minute eGauge and Nordic data means for some calculations, I've omitted first and last points in heat pump cycle (for instantaneous COP and output)
- For seasonal COP calculation uses cumulative data

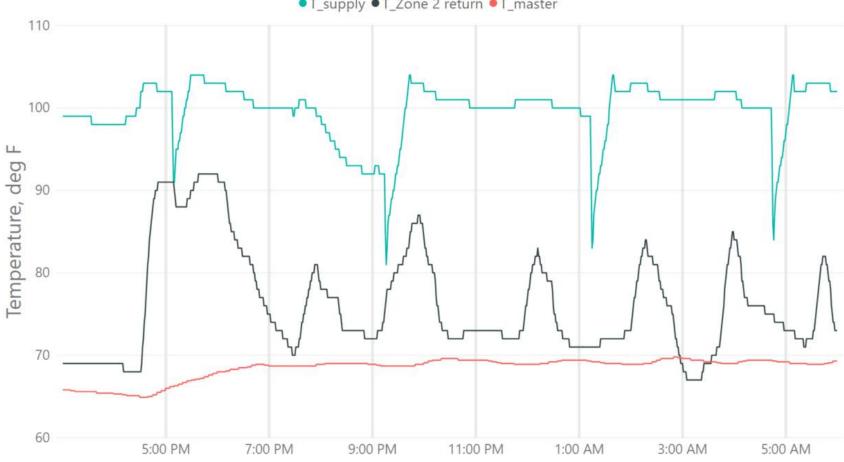
Output (Jan 7, 12 hrs, AWHP only)


Efficiency Vermont

Output (Jan 10, cool slab after days of wood heat)



Zone 1 (slab) distribution

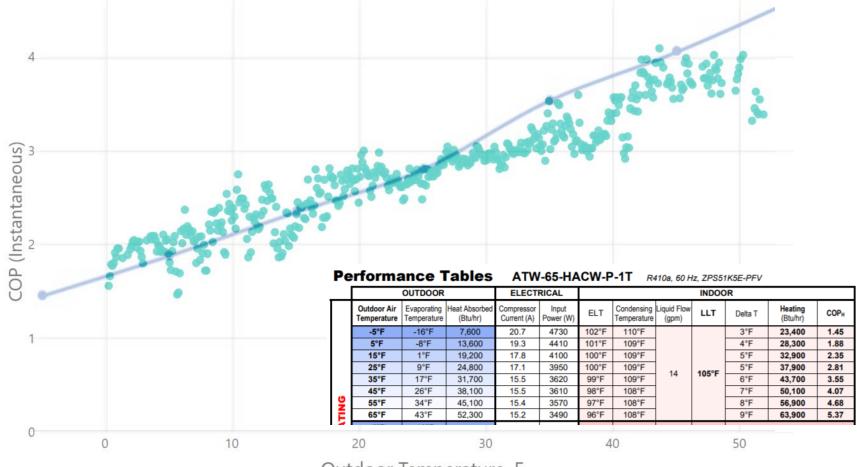


Zone 1 recovery after wood heat

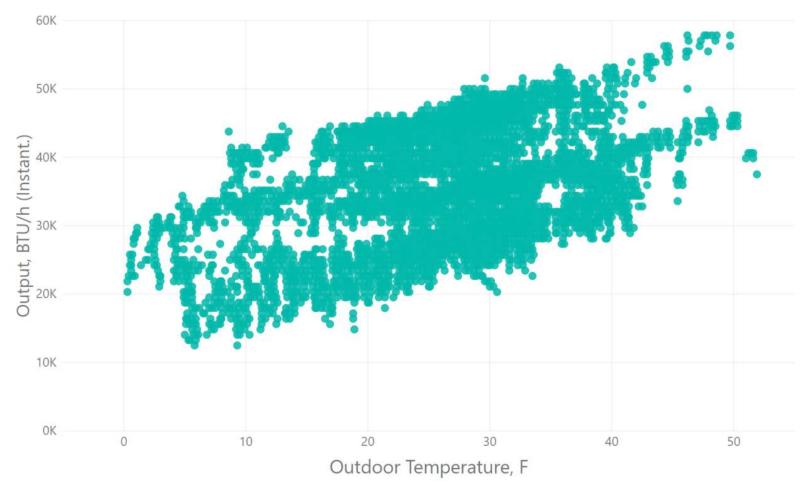
Zone 2 distribution


● T_supply ● T_Zone 2 return ● T_master

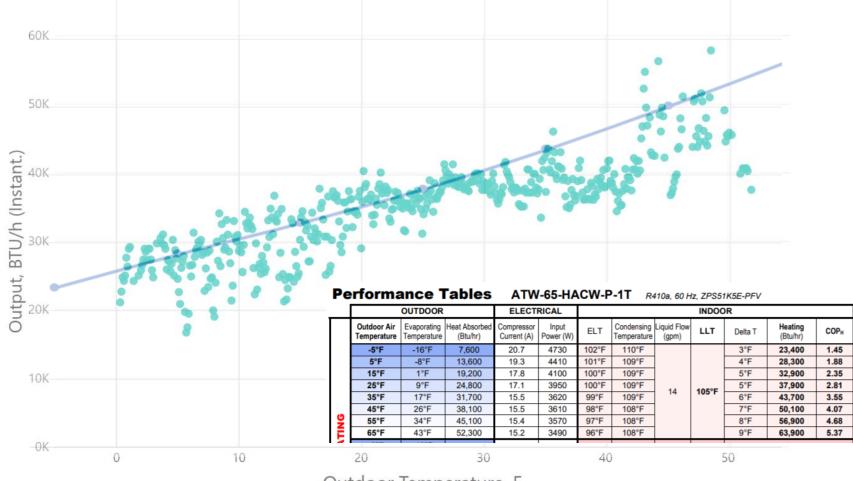
Data: AWHP COP



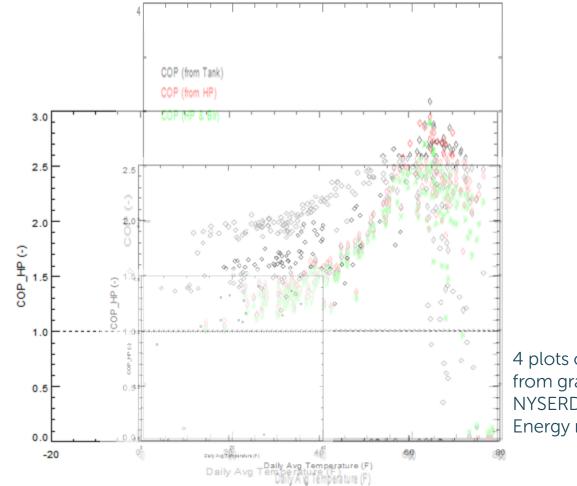
COP, instant. (Nov 2019-Jan 2020)


COP, vs. Manufacturer Specs

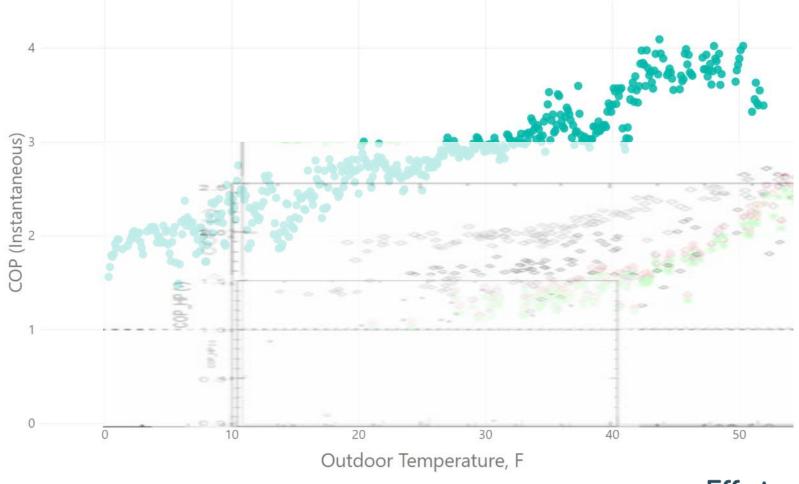
Outdoor Temperature, F



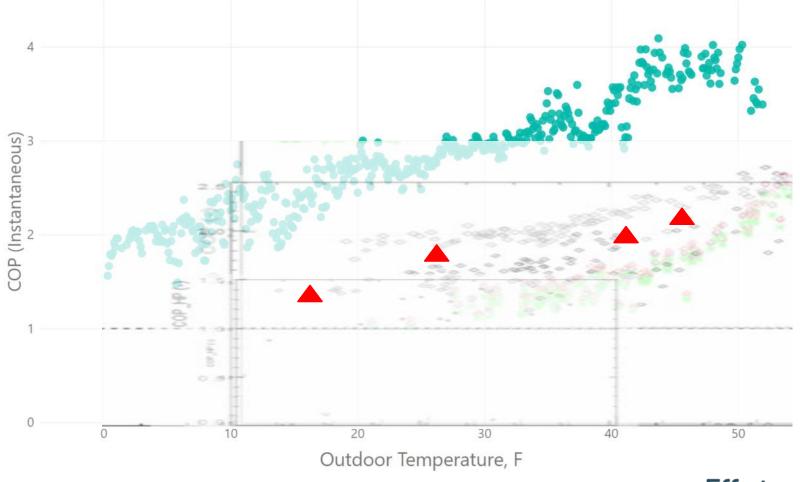
Output, instant. (Nov 2019-Jan 2020)


Output, vs. Manufacturer Specs

Outdoor Temperature, F


COP: NYSERDA study (4 SpacePak AWHPs)

4 plots overlaid (by me), from graphics within NYSERDA / Frontier Energy reports



COP: System comp. to NYSERDA study

COP: System comp. to NYSERDA study + VT site

Performance

Fully monitored period:

- 8.21 MMBTU heat produced (2405 kWh)
- 967 kWh in (includes 108 kWh defrost)
 - Includes all auxiliaries except the two distribution system circulator pumps

*Assuming period is typical of the heating season 2.40 when adding in distribution system electricity

Operational cost

Based on current usage, projected 12-month cost of running AWHP = \$823

Comparison

- = \$1084 (replaced propane boiler)
- = \$745 (new gas boiler)

Costs

Heating system costs

Category	Item	Cost
Distribution	PERT tubing	473
	Fittings and misc.	324
	Panel radiators	2182
	Panel radiator fittings, valves	243
	Manifolds – Uponor 6-loop (2)	700
	Circulator pump - Grundfos alpha2 26-99	446
	Circulator pumps - Grundfos alpha2 15-55F (2)	389
	EVT rebate – circulator pumps	-100
	Finishing work incl. non-HVAC contracted labor	2000
	Subtotal	\$6,657
AWHP	AWHP - Nordic ATW-65 with accessories	7590
	EVT rebate – AWHP	-5000
	Buffer tank – ecoUltra 70g with 9 kW backup	1956
	Controls and thermostat	227
	Electrical – breaker upgrade, panel rewiring	1440
	Labor, fittings, mounting hardware, refrig.	3365
	Finishing work incl. non-HVAC contracted labor	315
	Subtotal	\$9,893
	Total	\$16,550

Heating system costs

Category	Item	Cost	Cost, future-proof
Distribution	PERT tubing	473	
	Fittings and misc.	324	
	Panel radiators	2182	
	Panel radiator fittings, valves	243	
	Manifolds – Uponor 6-loop (2)	700	
	Circulator pump - Grundfos alpha2 26-99	446	
	Circulator pumps - Grundfos alpha2 15-55F (2)	389	
	EVT rebate – circulator pumps	-100	
	Finishing work incl. non-HVAC contracted labor	2000	
	Subtotal	\$6,657	
AWHP	AWHP - Nordic ATW-65 with accessories	7590	7590
	EVT rebate – AWHP	-5000	-5000
	Buffer tank – ecoUltra 70g with 9 kW backup	1956	***
	Controls and thermostat	227	
	Electrical – breaker upgrade, panel rewiring	1440	500
	Labor, fittings, mounting hardware, refrig.	3365	1500
	Finishing work incl. non-HVAC contracted labor	315	
	Subtotal	\$9,893	\$4,590
	Total	\$16,550	\$4,590

Rest of "system" costs

Category	Item	Cost
Ventilation	Distribution tubing and registers	1769
	Finishing work incl. non-HVAC contracted labor (Phase I)	2000
	Ventilator plus accessory parts, fittings, and filters	4709
	Electrical	150
	Finishing work incl. non-HVAC contracted labor (Phase I)	900
	Subtotal	\$9,528
DHW	Heat pump water heater (HPWH)	1719
	EVT rebate – HPWH	-500
	Parts and labor	2246
	Electrical	300
	Finishing work incl. non-HVAC contracted labor	100
	Subtotal	\$3,865

Rest of "system" costs

Category	Item	Cost
Ventilation	Distribution tubing and registers	1769
	Finishing work incl. non-HVAC contracted labor (Phase I)	2000
	Ventilator plus accessory parts, fittings, and filters	4709
	Electrical	150
	Finishing work incl. non-HVAC contracted labor (Phase I)	900
	Subtotal	\$9,528
DHW	Heat pump water heater (HPWH)	1719
	EVT rebate – HPWH	-500
	Parts and labor	2246
	Electrical	300
	Finishing work incl. non-HVAC contracted labor	100
	Subtotal	\$3,865
Heating	Subtotal	\$16,550

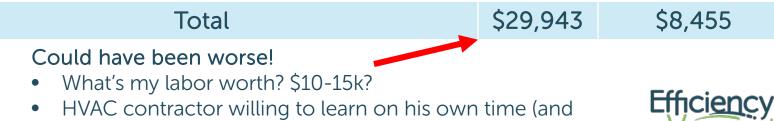
Total \$29,943

Notes:

- Includes \$5600 in EVT rebates

- Retail or contractor pricing / no "free" or extra-discounted equipment

Radiator right-sizing, cost impacts


Zone / Room	Design heat load	180F (Match manufacturer literature)	120F design
2 / Bed 1	5600 btu/hr	<u>12" x 71" (1-plate)</u> \$530	\$619 + \$172 = \$791
2 / Bed 2	3800 btu/hr	<u>12" x 59" (1-plate)</u> \$500	\$511
2 / Bed 3	1800 btu/hr	<u>12" x 24" (1-plate)</u> \$260	\$247
2 / Bath	1800 btu/hr	<u>12" x 24" (1-plate)</u> \$260	\$247
Radiator cost (excl. freight, fittings, and valves)		\$1550	\$1796 (+\$246 premium)

* Assumes 1 gpm, each room is a homerun to the mechanical room supply manifold Prices for "Match manufacturer literature" column are hyperlinked to product, via SupplyHouse.com; note that for true apples-to-apples comparison I could have had Purmo radiators priced Prices for "Design for 120F supply water" are actuals paid, Purmo radiators ordered from VP Supply

Rest of "system" costs

Category	Item	Cost	Cost, future-proof
Ventilation	Distribution tubing and registers	1769	
	Finishing work incl. non-HVAC contracted labor (Phase I)	2000	
	Ventilator plus accessory parts, fittings, and filters	4709	
	Electrical	150	
	Finishing work incl. non-HVAC contracted labor (Phase I)	900	
	Subtotal	\$9,528	\$0
DHW	Heat pump water heater (HPWH)	1719	1719
	EVT rebate – HPWH	-500	-500
	Parts and labor	2246	2246
	Electrical	300	300
	Finishing work incl. non-HVAC contracted labor	100	100
	Subtotal	\$3,865	\$3,865
Heating	Subtotal	\$16,550	\$4,590

 HVAC contractor willing to learn on his own time (brainstormed ways to save cost)

Payback

Simple payback

Because existing design was *incompatible*:
 Approx. 60 years (with \$5100 EVT incentives)

Payback

Simple payback

- Because existing design was incompatible:
 Approx. 60 years (with \$5100 EVT incentives)
- If existing design was AWHP compatible and boiler did not need replacement:

– Approx. 20 years

Payback

Simple payback

- Because existing design was incompatible:
 Approx. 60 years (with \$5100 EVT incentives)
- If existing design was AWHP compatible and boiler did not need replacement:

– Approx. 20 years

- If existing design was AWHP compatible and boiler needed replacement:
 - Somewhere in the 0-5 year range

Closing thoughts

Benefits

Challenging payback as the lens How do you attach a price to the following?

• No combustion / propane is gone

Challenging payback as the lens

How do you attach a price to the following?

- No combustion / propane is gone
- Room by room temperature control*
- Filtered fresh air ventilation
- Balanced slab heat
- Less window condensation
- Warm radiators / no possible burn surfaces
- House tightened and insulation gaps filled
- HPWH scavenges waste heat (slab, AWHP, buffer tank, pumps, electronics)
- Cool-dry zone (HPWH + no boiler)

Challenging payback as the lens

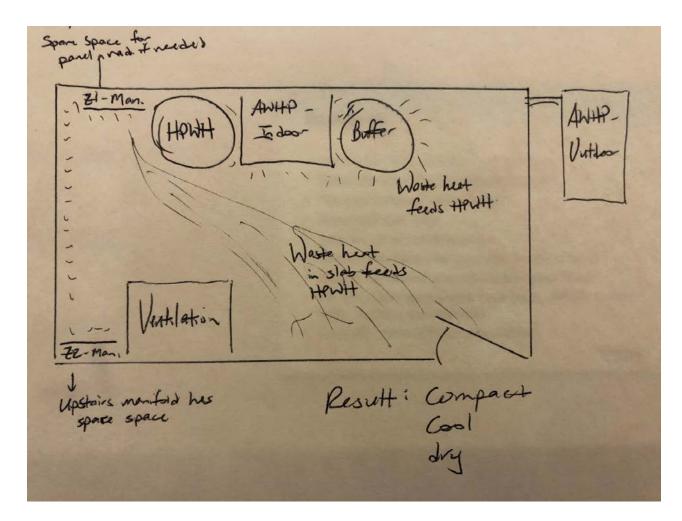
How do you attach a price to the following?

- No combusti
- Room by roo
- Filtered fresh
- Balanced slat
- Less window
- Warm radiate
- House tighte
- HPWH scaver tank, pumps,

Cool-dry zone (HPWH + no boiler)

Challenging payback as the lens

How do you attach a price to the following?


- No combustion / propane is gone
- Room by room temperature control*
- Filtered fresh air ventilation

Balance	If you're in this room:	
• Less wi	"We" have to use creativity	
• Warm	to encourage people to see	5
HouseHPW/H	past the \$-only approach	buffer
	umps, electronics)	ounci

• Cool-dry zone (HPWH + no boiler)

House as a "system"

Heating backup:

- Electric element
- Woodstove

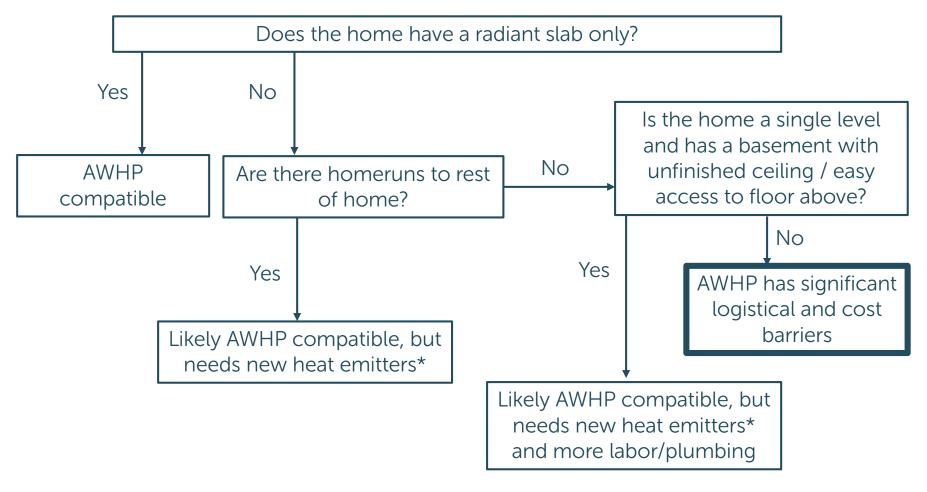
Lessons learned

- Leg kit and sound insulation add-ons should be standard
- One size smaller might have been the better choice
- Haven't found controller to prioritize Zone 2 necessary (could have saved \$100)
- 2-wire to thermostats was a pain
- Emitters a bit oversized → doing just fine down to zero degrees with 105F supply
- Started heating season with outdoor reset, but AWHP runtimes so short that moved to 105F all the time
- Split vs. mono-bloc has challenges

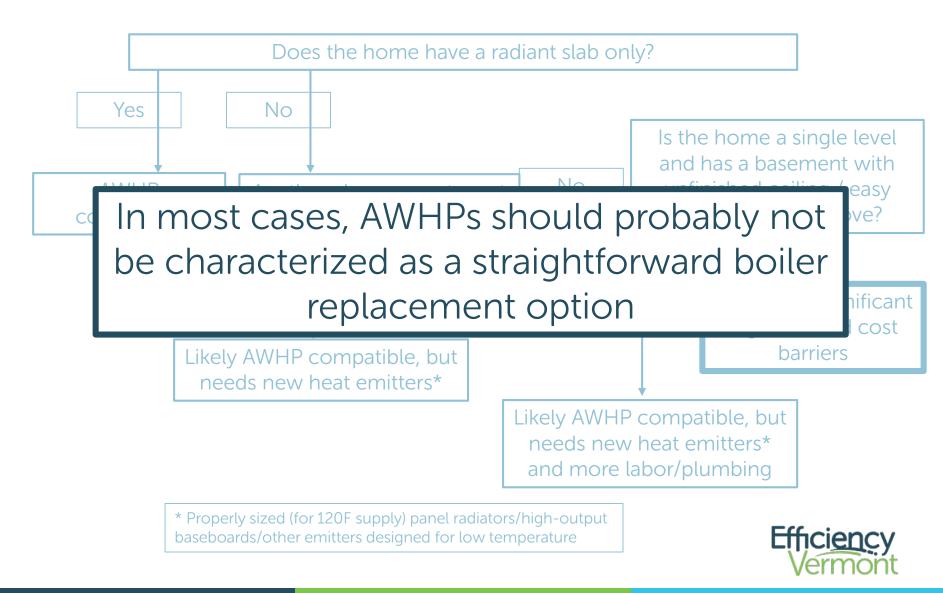
Closing thoughts

1. AWHP not right or easy for every <u>existing</u> home

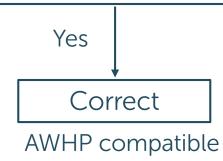
Closing thoughts


- 1. AWHP not right or easy for every <u>existing</u> home
- 100% of new homes need to be built with low temperature infrastructure in place
 - ➔ Beyond the tubing embedded in the concrete slab, very little was reused
 - → Like balanced (fresh air) ventilation—another important feature that requires advanced planning this is a no-brainer

Suggested "decision tree"


Decision tree: Existing homes

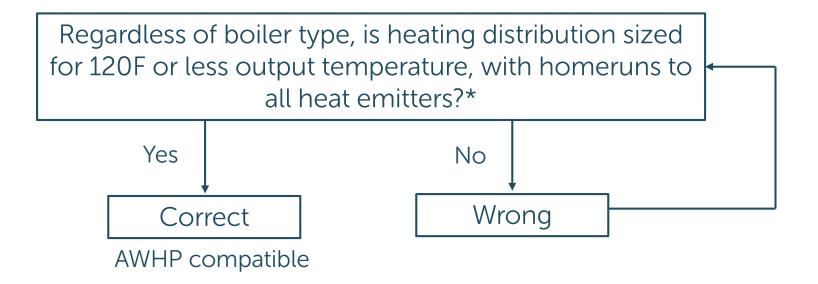
* Properly sized (for 120F supply) panel radiators/high-output baseboards/other emitters designed for low temperature



Decision tree: Existing homes

Decision tree: <u>New</u> homes

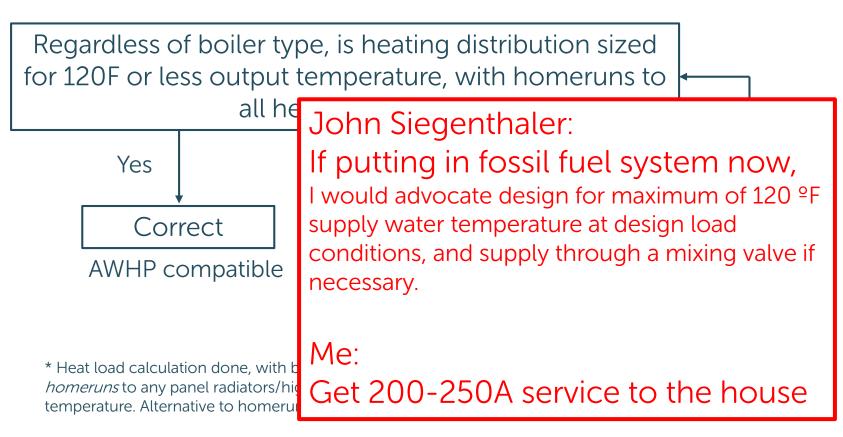
Regardless of boiler type, is heating distribution sized for 120F or less output temperature, with homeruns to all heat emitters?*



* Heat load calculation done, with buffer tank plus combination of radiant floors/surfaces and *homeruns* to any panel radiators/high-output baseboards/other emitters designed for low temperature. Alternative to homeruns is supply and return loop with zone valves at take-offs.

Don't install 2-wire to thermostat locations

Decision tree: <u>New</u> homes



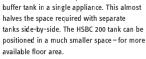
* Heat load calculation done, with buffer tank plus combination of radiant floors/surfaces and *homeruns* to any panel radiators/high-output baseboards/other emitters designed for low temperature. Alternative to homeruns is supply and return loop with zone valves at take-offs.

Don't install 2-wire to thermostat locations

Decision tree: <u>New</u> homes

Don't install 2-wire to thermostat locations

On the horizon...



Stiebel Eltron split system

- Split (hydraulic)
- 2 sizes (specs @ A-7/W35*) - 43.9 kbtu/h, 2.98 COP - 23.4 kbtu/h, 2.83 COP
- Inverter-driven
- DHW+buffer integrated
 - Buffer 26.4gal
 - DHW 44.4gal
- Built-in backup (5.9 kW)
- Field testing 10 units in September 2020

WPL 15 ACS / WPL 25 ACS HEAT PUMPS Comprehensive air-to-water solution Stiebel Eltron WPL 15 & 25 The HSBC 200 tank comprises a DHW tank and ACS heat pumps use outdoor air to produce hot water for central heating, cooling, and DHW. Connection to the hot water tank inside available floor area. the building is hydraulic, not refrigerant, making installation easy, affordable, and suitable for both new construction or existing Availability system modernization. Q2 2020 System with central heating, DHW heating and cooling functions Energy efficient inverter technology for high flow temperatures **Technical Data** STREET CURCH

*Outside -7C (19.4F), supply water 35C (95F)

Enertech split system

- Details unknown
- Announced at AHR conference this week
- Based on NIBE (Sweden)

Enertech's Leading Edge Air-to-Water Heat Pump

Taco split system

- Split (hydraulic)
- Based on Dimplex (German)
- Size (specs @ A-7/W35*)
 30.5 kbtu/h, 2.8 COP
- Inverter-driven
- Buffer integrated
- One installed VT
- Available Q3 2020

*Outside -7C (19.4F), supply water 35C (95F)

SpacePak split system

- Split (refrigerant)
- Up to 68 kbtu/h
- Inverter-driven
- Operates to -22F
- Expected Q3 2020

*Outside -7C (19.4F), supply water 35C (95F)

Indoor Unit

Natural refrigerants?

- 1. Sanden Eco Runo
 - R-744 (CO2)
 Field triais in Pacific Northwest
- 2. Vaillant
 - R-290 (propane)
 - German system for sale in Europe Nov 2020

I've heard:

"The technology isn't there..."

I disagree.

- Good products are out there; and more are coming
- \$1000/ton incentive in Vermont right now
- It's taking off as we speak
- Modulation isn't necessary with proper design

Takeaways

Pro:

- Thermal comfort and ability to control is fantastic likely far better than minisplits
- Proper **ventilation** is great
- Separating **DHW** from the AWHP was a good move
- Mechanical room very full, but useful in a different if unconventional way than before
- No gas/propane hookups or combustion = **safety**

Takeaways

Pro:

- Thermal comfort and ability to control is fantastic likely far better than minisplits
- Proper **ventilation** is great
- Separating **DHW** from the AWHP was a good move
- Mechanical room very full, but useful in a different if unconventional way than before
- No gas/propane hookups or combustion = **safety**

Con:

- Expensive, took longer than hoped, and was destructive
- There is a **0% chance** we would have done this **if not for** the simultaneous ventilation system and bathroom remodel

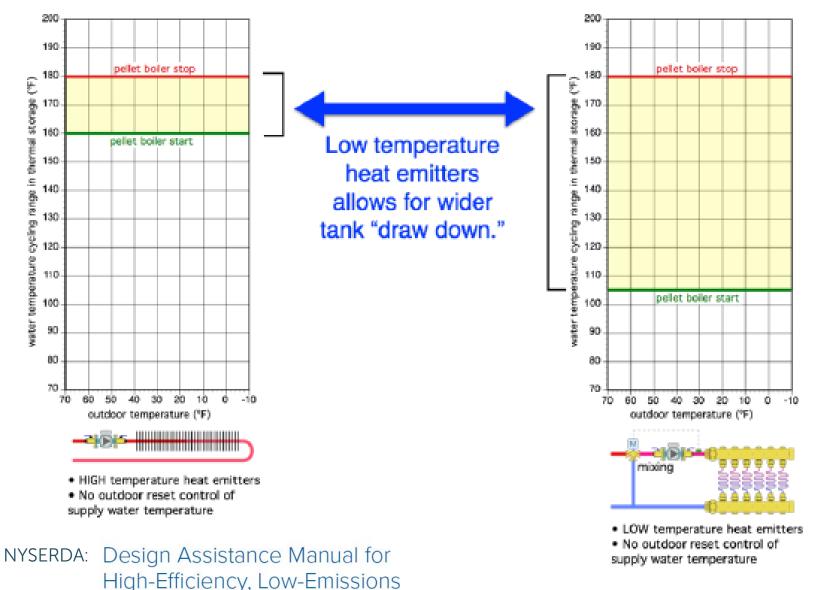
Takeaways

Pro:

- Thermal comfort and ability to control is fantastic likely far better than minisplits
- Proper **ventilation** is great
- Separating **DHW** from the AWHP was a good move
- Mechanical room very full, but useful in a different if unconventional way than before
- No gas/propane hookups or combustion = **safety**

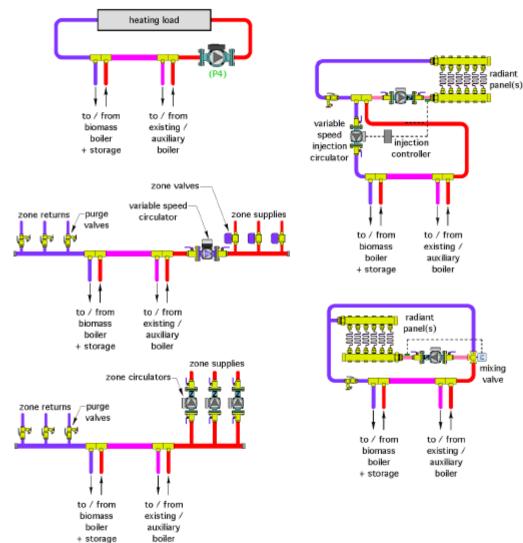
Combined with an induction cooktop and heat pump water heater, it's a fantastic **allelectric** package that people should be able to replicate

Would we do it again?



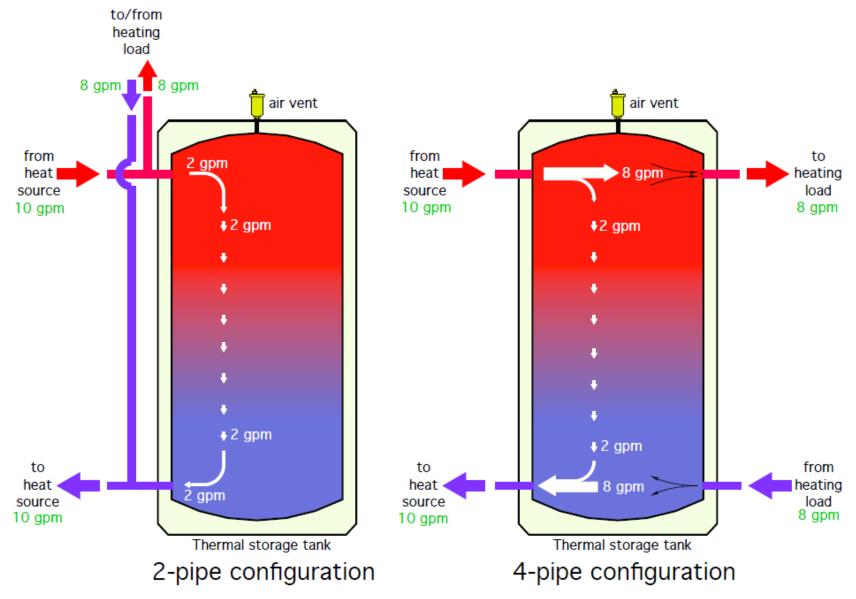
If any single person in this room designs or installs distribution that relies on **180F** supply, in a new home, this presentation has been a failure

Figure 3-4. Comparison of temperature cycling range for a thermal storage tank using hightemperature heat emitters versus low-temperature heat emitters



Biomass Boiler Systems

In Residential and Commercial Buildings



NYSERDA: Design Assistance Manual for High-Efficiency, Low-Emissions Biomass Boiler Systems In Residential and Commercial Buildings

"2-pipe" versus "4-pipe buffer tank piping

Siegenthaler, BBD 2019