

Passive House Retrofit of a VT House BBbD-2018 Conference

Burlington VT Feb. 7th, 2018

www.eplusbuildings.com

The Problem

U.S. Energy Consumption by Sector

Source: ©2013 2030, Inc. / Architecture 2030. All Rights Reserved. Data Source: U.S. Energy Information Administration (2012).

The Problem

The Problem - 67% from Fossil Fuels*

U.S. Electricity Consumption by Sector

Source: ©2013 2030, Inc. / Architecture 2030. All Rights Reserved. Data Source: U.S. Energy Information Administration (2012).

Source: http://pubs.acs.org/journal/esthag University of Leeds, Leeds LS2 9JT, United Kingdom Mtoe = million ton of oil equivalent / 1 toe = 11630 kWh

Useful work = 13% of Primary Exergy

Source: http://pubs.acs.org/journal/esthag University of Leeds, Leeds LS2 9JT, United Kingdom

The Solution for Buildings

Passive House Buildings

PH Concept Explained in 90 Seconds

PASSIVE BUILDING PRINCIPLES

Rational Behind Passive House Approach

Roadmap to High Performance

EU Passive House Energy Standard Clearly Defined

Heating Demand (Site):	4.75 kBTU/Ft2-YR
Cooling Demand (Site):	4.75 kBTU/Ft2-YR
Peak Heat Load :	3.14 BTU/Ft2-Hr
Peak Cooling Load:	2.54 BTU/Ft2-Hr
Total Energy Demand (Source):	38 kBTU/SF-YR
Air Tightness:	0.6 ACH @ 50pa (based on interior floor area)

PHIUS Climate Specific Criteria

PASSIVE STANDARDS IN VARYING CLIMATES

01110 Seattle State WA Tecome Inti AP Location Zone 40 Annual Heating Demand... 5.4 Annual Cooling Demand... 1 Peak Heating Load Btu/... 3.3 Peak Cooling Load Btu/... 3.4 Manual J Peak Heating ... 5.6 Manual J Peak Cooling ... 4.8 OTTOTAL COMPANY THE OA

STILLION COLL

USA PHIUS+ 2015 Building Criteria

Heating Demand (Site):	1 - 12 kBTU/Ft2-YR		
Cooling Demand (Site):	1 - 21.4 kBTU/Ft2-YR		
Peak Heat Load :	0.8 - 5.4 BTU/Ft2-Hr		
Peak Cooling Load:	1.8 - 8.9 BTU/Ft2-Hr		
Total Energy Demand (Source):	Beds+1 / 6200 kWh/PERSON-YR (Temporary)		
	Beds+1 / 4200 kWh/PERSON-YR (Future)		
Air Tightness:	0.05 cfm/gross sqft shell @ 50 pa		
	0.08 cfm/gross sqft shell @ 75 pa		

The Solution – Reduce **Energy Waste** Comparison of Energy Standards

The Solution – Passive House

- Dramatic reduction in wasted energy
- Superior indoor air quality
- Superior occupant comfort
- Lower annual energy costs
- Smaller carbon footprint
- Reduces Maintenance and building deterioration
- Eliminates Dependence on Fossil Fuel
- Equal or Lower Out of Pocket expense for Mortgage plus Energy

Climate Specific Level of Thermal INSULATION to control heat loss

For Climate Zone 6 R60 WALLS: R90 CEILING: R60 SLAB High Performance WINDOWS U value < 0.13 (R-7)

Insulated Slab on Grade

Insulated Slab on Grade

Passive House Concept: Controlling Gains Seasonally - Windows and Orientation

TRIPLE GLAZED: U VALUE < 0.13; 0.60 Solar Heat Gain Coefficient on South Windows for Climate Zone 6

Passive house Concept: Controlling Heat Loss - Eliminate Air In/Ex-filtration

Max. 0.6 ACH @ 50 PA (based on interior floor area) Max. 0.05 cfm/gross sqft shell @ 50 pa

Effects of Air Infiltration on Heat Loss

HEAT LOSS FACTS EXISTING BUILDINGS

- 30-50% of Space Conditioning Energy (DOE)
- 8 MPH wind = -30% R Value (DuPont, 2007)
- Average US house: 3 ft² of holes
 - Typical 2500 ft² home: ½ mile of cracks

Investigation of the Impact of Commercial Building Envelope Airtightness on HVAC Energy Use (NISTIR 7238) - NIST, US D.O.C.

AIR BARRIER | VCL | WRB MATERIAL ASSURING DURABILITY OF ASSEMBLY

MOISTURE TRANSFER

Air Movement = 98%+ Water Vapor Movement in Building Cavities

Infiltration: 1 in² hole = **30** quarts of water Diffusion: 4'x8' sheet of drywall (4608 in2) = 1/3 quart of water

One Heating Season (Indoors @ 70°F, 40% Relative Humidity)

90:1 ratio infiltration vs diffusion

Source: Building Science Corp.

Moisture Dynamics in Wall Assembly

WUFI Analysis Comes Handy

Passive House Concept: Controlling Heat Loss – Eliminate Thermal Bridges

Thermal-bridge-free construction - Roof Assembly, Wall Assembly, Floor Assembly

With Thermal-bridge-free construction temperature bridges are eliminated and in turn homogenous temperature throughout the structure are achieved.

MINIMIZE LOSS: ELIMINATING THE THERMAL BRIDGE MINIMIZES HEAT LOSS CONDENSATION/BUILDING DETERIORATION

BAD = high heat loss + risk of condensation

GOOD = low heat loss, warm interior surface + no condensation

Minimum temperature 48 F below dew-point, risk of condensation Minimum temperature 58 Fabove dew-point, no risk of condensation

Passive House Concept: Provide Fresh Air... Heat Recovery Ventilation

MINIMUM of 0.30 ACH

HRV Efficiency & Energy Use

ENERGY PERFORMANCE

SUPPLY TEMPERATURE		NET AIR FLOW		POWER CONSUMED	SENSIBLE RECOVERY	APPARENT SENSIBLE	
	°C	°F	L/S	CFM	WATTS	EFFICIENCY	EFFECTIVENESS
HEATING	0	+32	31	65	20	88	93
	0	+32	47	99	32	87	93
	0	+32	61	129	50	85	91

HRV Energy to Meet IAQ Needs

Source: Peter Schneider - VEIC

Heating Energy Needed to Meet Comfort

Temperature Variation with Point Source Heating & Heat Pump Energy Usage (135kWh)

RH and Comfort

RH and Comfort

Passive House Concept: Capturing Heat Gains - People

Passive House Concept: Capturing Heat Gains... Equipment

Passive House Concept: Once the Wasted Energy is Reduced to the maximum...

Figure 1: Comparing finite and renewable planetary energy reserves (Terawattyears). Total recoverable reserves are shown for the finite resources. Yearly potential is shown for the renewables.

Energy Usage Comparison

Source: Peter Schneider - VEIC
How does it relate to other programs?

Energy Efficient Housing Concepts in the US:

- Vermont Energy Code (RBES): required for all new construction Energy Star 3.0: DoE Program (30% more efficient than Code) Building America: DoE super energy savings Program (15% better than EStar) Passive House: 90% more efficient than Code 70% more efficient than Energy Star 55% more efficient than Building America
 - Can be cost equivalent to conventional building for single family and equal or less for multifamily and commercial construction.

How does it relate to other programs?

CPHC Training @2015 Passive House Institute US

PH Norwich VT 2457 sqft of conditioned area

Source: Owner

PH Norwich VT Coldest Day Jan.2013 – **No Heat ! – No Occupants**

Space Temperatures with Heating and HRV Energy Usage

Residence G, Jan 24, 2013 Electric Radiant Heat: 0 kWh; HRV: 1 kWh

PH Norwich VT Coasting February 2015

With only 1 kWatt of floor matt heater No occupants and minimal Solar Gain

It is no Rocket Science and applies to retrofits too

Frankfurt Teverstrasse, Refurbishment using Passive House Principles

McKeesport Downtown Housing (Residential) McKeesport, PA 84 units - 36643 sqft

Source PHIUS Projects Database

Retrofit of Existing Buildings

Glasswood – Portland OR Mixed-Use Commercial

Floor Area: 1397 ft² Air-tightness: 0.39 ACH50

Cold Spring, NY Small Commercial

Floor Area: 1097 sqft HHD: 6035

North Street Passive House – Cold Spring NY Residential

Floor Area: 1845 sqft Air-tightness: 0.86 ACH50

Passive Lodge at Silver Lake – Sharon CT Residential

Floor Area: 2423 ft² Air-tightness: 0.0317 CFM50/ft²-envelope

Weinberg Commons – Washington DC Multi-Family

13 Units Floor Area: 9380 ft² Air-tightness: 0.56 ACH50

Shading by Objects is also taken in consideration in PHPP

Shading by Objects is also taken in consideration in PHPP

Shading Representation February @ Noon

Passive House Projects Worldwide

Passive Houses for Different Tasks

School

Social Housing

Office Buildings

Swimming Hall

Kindergarten

PH Projects Austria

Passive Apartments NHT Lodenareal, Innsbruck

Largest certified "Passive House" complex in the world, 2009

Herz&Lang Architects & Engineers House of the future!

> NHT NEUE HEIMAT TIROL

Exmennistrige WohnungsGrabh

52

- Pilot project in Tirol, 354 apt.
- Construction cost 54 Mil euro
- 250 Excursions since 2009

Neue Heimat Tirol has built over 1000 apt. with PH Consulting since 2007

"The Lodenareal is the key project for the future of housing in Europe"

Wolfgang Feist 2009

Monitoring 2009-2012: Best PH in Austria

Source: nht, din a4, team k2

Passive House Projects North East USA

PH Projects Vermont

Affordable Senior Housing Elm Place - Milton VT Only 127,651 kBTU/yr at 2°F for 27,690 sqft floor area

Habitat for Humanity East Montpelier

PH Projects Vermont

ELM PLACE

THIRD ANNUAL PASSIVE PROJECTS COMPETITION WINNERS!

ELM PLACE -Best Overall Passive Building Winner

Multifamily project category Winner Affordable project category Honorable Mention

2017 PHIUS Passive House Projects Competition

83% less energy for heating/cooling (a) Only 2% more than (b) Only 2% more than (c) On

51 Upper Pines – Warren VT Case History

Built in the early 70's. Simple in construction Slab on grade floor **Inexpensive widows** Fiberglass insulation, Fireplace in great room and cathedral ceilings with no attic.

51 UPPER PINES ENERGY AUDIT

Bruce E. Landry Date of audit: 11/1315

CERTIFIED

NECCO - 51 Upper Pines 51 Upper Pines Road Warren, VT 05674

(802)793-9400

5 Star Energy Tech LLC

85 Blackwell Street, Barre, VT 05641

51Upper Pines – Warren VT

The 516 gallon of propane usage at 62-65 degrees in a 1440 sq ft home indicated the boiler was running often to keep up. Averaged in all the categories the house performed at a 60% efficiency which is below average

The 2 bathrooms have poor ventilation with potential to mold formation. One fan was pulling only 6-10 CFM, while a BR-fan should be pulling 50-80 CFM.

Thermal Bridges Everywhere

Thermal Bridges Everywhere

Air Leaks Everywhere

1740 CFM A lot of infiltration for a 1440 ft2 house

First Phase of the Project The Roof Overhaul

First of 7 lifts

ISO sealed to insulation box

All Joints Carefully Taped

First Phase of the Project The Roof Overhaul

First Phase of the Project Finished Roof

NECCO INC 12" PolyIso for R-83 Finished Roof

Second Phase of the Project The Passive House Planning Package Energy Model

PHPP = PASSIVE HOUSE PLANNING PACKAGE

The energy modeling software developed by Passivhaus Institut - Germany

- Climate and orientation data input

ENERGY BALANCE PHPP POPULATION PROCESS

Climate Data input

ENERGY BALANCE PHPP POPULATION PROCESS

Orientation- Windows Input and Shading Analysis

Notes: South Angle Estimator

ENERGY BALANCE PHPP POPULATION PROCESS

PHPP = PASSIVE HOUSE PLANNING PACKAGE

The energy modeling software developed by Passivhaus Institut - Germany

- Climate and orientation data input
- Assemblies' R-value Calculation

ENERGY BALANCE COMPILING ENERGY LOSSES

Assemblies' R-Value Calculation

	Assembly no. Building assembly description 2 Roof						Interior insulation?
	Surface Film Resistance [hr.ft ² .F/BTU] interior Rsi : 0.57 exterior Rse : 0.23						
	Area section 1	R per inch	Area section 2 (optional)	R per inch	Area section 3 (optional)	R per inch	Thickness [in]
1.	T&G board	1.280					1.500
2.	Glass-Fiber Batts	3.330	sleepers 24" OC	1.280			1.500
3.	Plywood	1.470					0.500
4.	Polyiso unfaced	6.200					12.000
5.	OSB	1.390					0.625
6.							
7.							
8.							
	Percentage of sec. 1 Percentage of sec. 2 Percentage of sec. 3						Total
		75%		25.0%			16.13 in
	U-value supplement		BTU/hr.ft².°F	I	R-Value: 82.6	hr.ft ² .°F/BTU	
	NECCO IN NEW ENGLAND CONSTRUCTION	IC N CO.					

ldings
PHPP = PASSIVE HOUSE PLANNING PACKAGE

The energy modeling software developed by Passivhaus Institut - Germany

- Climate data input
- Assemblies' R-value Calculation
- Heat loses through the ground
- Areas and Thermal Bridges' input

Thermal Bridges' input Each one positive or negative is accounted for

 Ψ_{e} (for PHPP)

Internal Temperature External Temperature Lowest Surface Temp f_{RSI} at 68 °F/ 23 °F

Thermal Bridge Pitfall

$L_{2D} - (U_{1*A1} + U_{2*A2}) = \psi^*L$

(from THERM)

PHPP = PASSIVE HOUSE PLANNING PACKAGE

The energy modeling software developed by Passivhaus Institut - Germany

- Climate data input
- Assemblies' R-value Calculation
- Heat loses through the ground
- Areas and Thermal Bridges' input
- Orientation- Windows Input and Shading Analysis

EnerPHi	it planning:	Or	ient REDU	ati ICTI	on, Wi on facto	<mark>ndows</mark> DR SOLAF	Inpu Radia	t and SI	n <mark>ading</mark> DOW U.VA	And LUE	aly	sis		
Building: 51 Pines – Warren VT						Annual heating demand: 7.08						Heating degree	Heating degree days:	
Clin	iate:	MONTPELIER AP VT - Montpelier AP VT											7468	A. deal ar
Vi	ndow area orientation	Global radiation (cardinal points)	Shading	Dirt	Non-perpendicular incident radiation	Glazing fraction	SHGC	Solar irradiation reduction factor	Window area	¥indo v U- Value	Glazin g area	Average global radiatio	Transmissio losses	n Heat gains solar radiation
	nazinun:	kBTU/(ft'yr)	0.75	0.95	0.85				A'	978/66.61**	- A'	LDT8261' yr	kBTU/yr	kBTU/yr
Nor	th	66	0.46	0.95	0.85	0.61	0.37	0.23	13	0.16	8	66	380	73
Eas	st	118	0.39	0.95	0.85	0.60	0.37	0.19	42	0.16	25	118	1205	349
Sou	uth	200	0.35	0.95	0.85	0.67	0.54	0.19	62	0.17	41	200	1828	1270
¥e:	st	121	0.38	0.95	0.85	0.53	0.37	0.16	25	0.17	13	121	748	177
Hor	rizontal	158	1.00	0.95	0.85	0.00	0.00	0.00	0	0.00	0	158	0	0
	Total or average value for all windows.						0.45	0.19	142	0.16	88		4161	1868

- All windows and doors thermal data is cataloged
- Every single window, location and shading input is registered

Ventilation Heat Losses

In cases of direct venting, the PHIUS Make Up Air calculator must be used to account for direct venting of:

- Exhaust Dryer
- Exhaust Range Hood at Kitchen

This provided a new CFM average and a new efficiency of the ERV down from the one specified by the manufacturer

ENERGY BALANCE OPTIMIZATION Once all losses are accounted for...then

We can start to compile the heat gains

- South Windows SHGC 60
- West Windows SHGC 37 to control Summer overheating
- DHW recirculation line gains if required

And leave the building Net Zero ready

ENERGY BALANCE OPTIMIZATION Once all losses are accounted for...then

The Primary Energy load is also considered in PHPP since:

- For each kW required on site, the power plant must produce 3.2 kW
- PHPP also correlates this with the source of fuel (coal, natural gas, renewables, etc.) used in generation to calculated the CO2 impact

ENERGY BALANCE OPTIMIZATION

Mechanicals for supplemental heating/cooling & ventilation

Heating / Cooling

- Fujitsu 12000 BTU – Single Source located in the living room

Ventilation

- Lunos e² Two pairs located in the bedrooms and living room
- Lunos eGO One unit in each bathroom

51 Upper Pines - / Warren VT Forecasted Heat Demand & Peak Heat Load

The Passive House Retrofit has a heating demand of ONLY 7655 kBTU/yr for 1440 sqft floor home and a Peak Heat Load of 5139 BTU/hr

Execution of Second Phase Inside Slab Insulation

Remove Old Floor and cover Slab with 5" of Polylso

Execution of Second Phase Inside Slab Insulation

NECCO INC Interior floor plywood over ISO board

Execution of Second Phase Inside Slab Insulation

Joints and perimeter air sealed

Execution of Second Phase Finished Floor

Execution of Second Phase Outside Frost-Wall Insulation

Dig Trench and cover Frost Wall with 6" of XPS

Execution of Second Phase Foundation Insulation Complete

Foundation/floor insulated & Heat pump installed End Phase II

Begin Phase III Sheathing Removed At South Wall

Rear at chimney, actual insulation

Rear and West wall sill repair

stud with tape

stud with tape

All joints sealed with tape

Insulation Dam Rear Wall Chimney Cavity

East Side air sealed

Taped joints overlapped corners

Rear wall SPF complete

East wall foam complete

Rough opening prep

> NECCO INC NEW ENGLAND CONSTRUCTION CO.

Sill, membrane, window

> NECCO INC NEW ENGLAND CONSTRUCTION CO

Air and water sealed

NECCO INC

South Wall Partially Foamed

Third Phase Insulation of Walls and Replacement of Windows

Rear wall 1st Layer 3" ISO

West Wall ISO Complete

First layer of 3" ISO board with window box

1st layer ISO sealed, second layer installed

1st ISO taped to XPS found insulation

Rear 2nd Layer ISO w/strapping

Air seal penetrations

Third Phase Siding Finishing

Third Phase Siding Finishing

End Third Phase

End Results Third Phase

End Results Third Phase

Mechanicals

Ductless Mini-Split Heat Pump Outdoor unit --Indoor unit

Ventilation ERV's Locations 1st Floor

Ventilation ERV's Locations 2nd Floor

Final Results Blower Door Test

The final Blower Door Test was

48cfm@50Pa

a reduction of **97%** air infiltration from the**1740 CFM** (10 ACH50) in the initial condition

Final Results Blower Door Test

48cfm@50Pa

Is equivalent to

0.27 ACH50

Passive House Planning Package – PHPP modeling comparison

Estimated BEFORE Renovation

Passive House Planning Package – PHPP modeling comparison

Forecasted with Renovation

6.39 85% of Heating demand kBTU/(ft²yr) 7.50 kBTU/(ft*yr) Space heating 4.29 BTU/(hr.ft²) 84% of 5.10 Heating load Heating, cooling, dehumidification, DHW, 54.5 kBTU/(ft²yr) 77% of 70.6 kBTU/(ft*yr) Primary energy auxiliary electricity. lighting, electrical appliances

90% Reduction in Heating Demand

THE TAKE-AWAY

If we want to make renewable energy sustainable we must start by eliminating the energy waste to the last kWatt possible

Thank you

Because we care about you saving money and living healthy, and care about the environment, our legacy and our future, we make **energy efficient buildings.** Enrique Bueno – <u>ebueno@eplusbuildings.com</u> Paul Sipple – <u>necco@gmavt.net</u>

