

Chitwood Energy Management

- Introduction
- Enclosure
- HVAC
- DHW & Electrical
- Outcomes
- Conclusions

Introduction

Central Valley Subdivision Stockton, California

Pacific Gas & Electric Co. ZNE Production Builder Demonstration Project Developer: Habitat for Humanity of San Joaquin County Consultants: Ann Edminster, Rick Chitwood, Steve Easley

Project Objectives

- Help production builders achieve ZNE, affordably
- Identify ways to reduce barriers to the design, construction, and operation of ZNE homes in California
- Inform PG&E's future program offerings

Project Overview

BASICS

- □ 1,200 sq. ft.
- 3 bedrooms + 2 baths
- Occupied by a family of 4, late May 2016
 ENCLOSURE
- Extensive advanced framing
- Air sealing & infiltration testing

HVAC

- Equipment in conditioned space
- HVAC sized based on field research
- Balanced ventilation

DHW

Highly efficient equipment & layout

Stockton, CA Climate Zone 3 CA Climate Zone 12 HDD 2,702 CDD 1,470

Burlington, VT HDD 7,288 CDD 411

Project Team

George Koertzen Habitat for Humanity Project Manager

- X decades, construction experience
- 7 yrs, modular housing manufacturing production manager
- 2 yrs, panel plant owner
- 6 days ZNE education classes

Unskilled Workers Student trainees Homeowners (sweat equity)

IntroductionEnclosure

Enclosure Highlights

- R-42 attic insulation
- R-21 walls & floor
- R-5 rigid insulation on walls
- Careful air sealing

Windows U.28, SHGC .20

- No plumbing in exterior walls
- MANY advanced framing measures

□ 24" OC Single top plates 60-ft LVLs, no lapping needed Windows fit framing (no up-charge for custom size) 35.5% Framing Factor (Sacramento 2014)

Advanced Framing ->

12.5% Framing Factor

Less than 50% CA avg

Made In Canad

RATED SHEATHING

32/16

SIZED FOR SPACING

HICKNESS 0.451 IN

STRUCTUPAL-I-PATED

WAR INT

BRET MANY

2-Stud Corners

Engineered Headers

No Extra Framing At Exterior Wall Intersections All studs shown on plans

Drywall Clips
Less cracking
Less lumber
Less labor

Gable-end Truss Assembly

Porch overhang eliminates need for support post

No harness work needed (harness required on 4:12 roof within 3 ft. of gable end)

Less blocking Reduced thermal bridging

Raised-heel trusses; OSB spliced below top plate at C-channel

Simpson SDWC Truss Hold-down Screw

- Stronger than H1 bracket
- Faster to install
- Eliminates hard-to-seal air leakage path

Studs stacked & pre-drilled

All Wiring At Studs & Plates

Infiltration Reduction Strategies

Hatches don't penetrate insulated assemblies Fixed windows at appropriate locations No recessed lights

	- M50 (1	ACH50)*		 Air Sealing Preliminary blower door after ceiling drywall Smoke testing
House	House	House	House	
1	8	9	10	
776	572	469	250	
CFM50	CFM50	CFM50	CFM50	
4∙75	3.6	2.9	1.53	-0 -
ACH50	ACH50	ACH50	ACH50	

* Temporary doors sealed at preliminary; not sealed at final.

IntroductionEnclosureHVAC

HVAC Highlights

- Air handler in conditioned space
- Ducts in conditioned space
- Ducted ¾-ton mini-split heat pump
 - **SEER 24.5, HSPF 12.5**
- 2 ERVs supply continuous fresh air
- High-performance bath exhaust fans
 - Humidity & occupancy controls
- Installation quality assurance (measured performance)

7 ft hallway soffit for ducts & mini-split

Smallest Available HVAC Used

¾-ton mini-split heat pump

Industry Standard	House 10	PG&E Redding Project*
500-800	1,600	2,400
sf/ton	sf/ton	sf/ton

* A larger home than House 10, in a hotter climate

 Sizing based on extensive field testing funded by CA Energy Commission

All available equipment is too large for small low-load CA homes – House 10 load is 6,000 Btu/hr or ½ ton

Doubledeflection supply grille Low-pressure Duct Design (minimizes static pressure to keep fan watt draw very low)

Double-deflection supply grilles with air-foil blades

Straight supply boots

Short supply ducts

Oversized supply ducts

Oversized return grille (20" x 30")

 A filter grille that will accept a 2-inch-thick filter

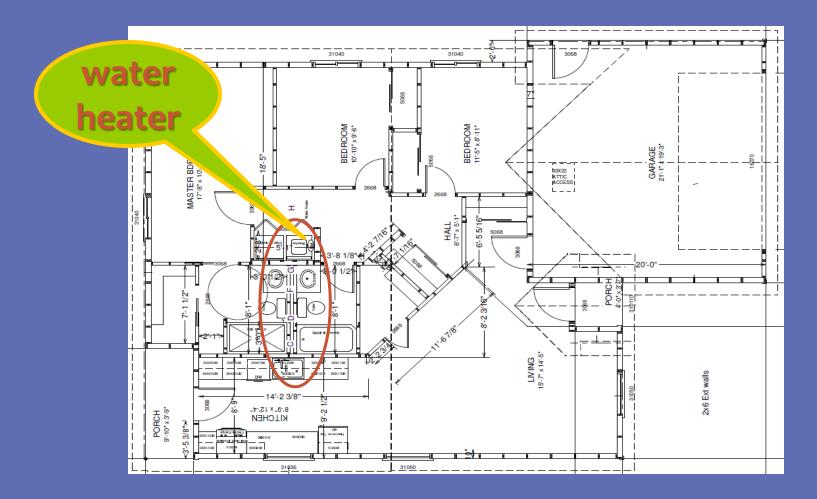
Installation Quality Assurance & Commissioning

- ZERO commissioning = industry standard
- Diagnostic testing ensures proper performance
- Commissioning site visit by consultants confirmed all HVAC equipment performed to spec

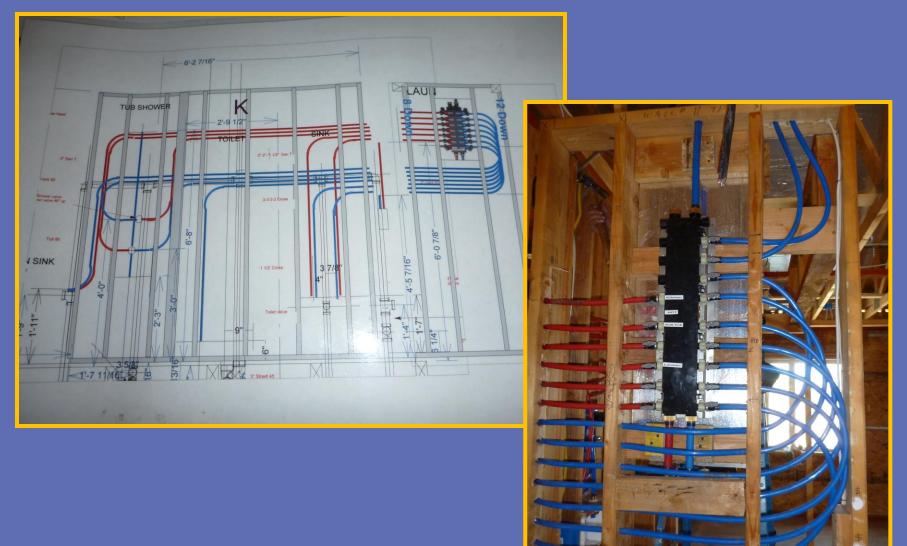
NOTABLE!

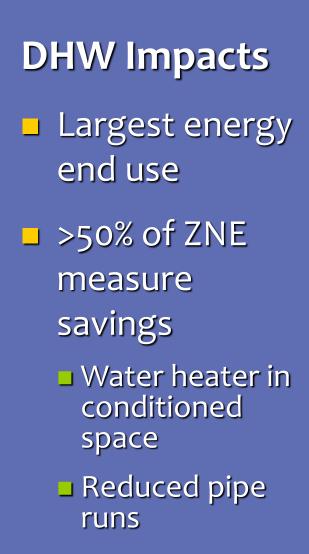
CA Energy Commission-funded research on 240 new HVAC systems found 100% failed to meet manufacturers' static pressure requirements

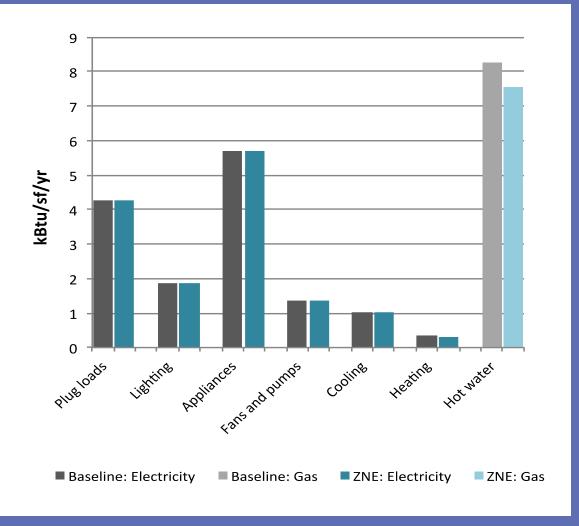
Introduction
Enclosure
HVAC
DHW & Electrical


DHW & Electrical Highlights

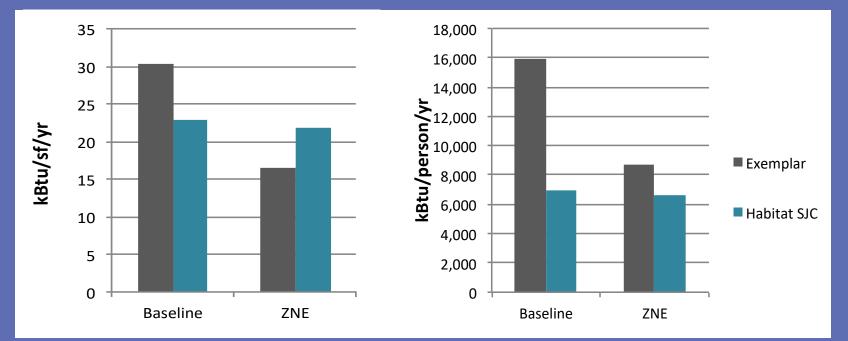
- Condensing tankless gas water heater
 EF.93
- Extremely compact DHW layout
- 100% LED lighting
- Indicator lights on garage & porch light switches


Longest hot water run = 12'


HVAC "System Off" switch near thermostat to eliminate vampire loss during swing seasons
 Electric vehicle circuit in garage


Extremely Compact DHW Layout

Detailed DHW Schematic Provided

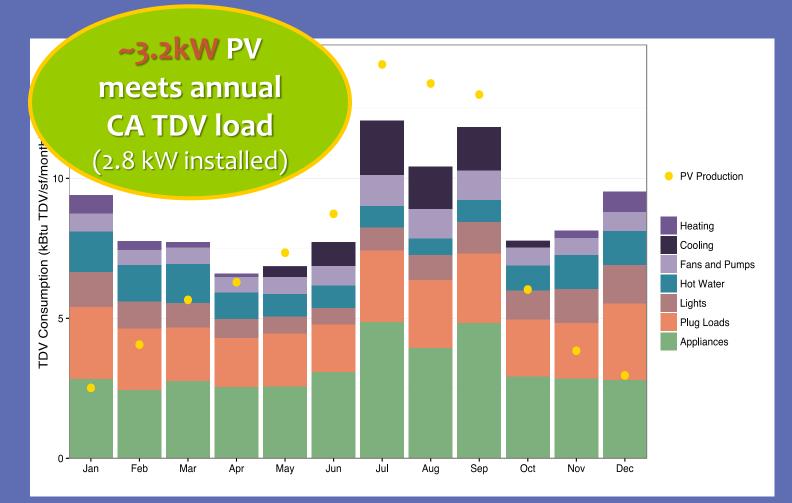

Graph: Resource Refocus LLC

- Introduction
- Enclosure
- HVAC
- DHW & Electrical
- Outcomes

Outcome #1: EUI 21.8 kBtu/sf-yr

 Higher than CA exemplar (ZNE feasibility study, Arup 2012) but

23% lower based on occupancy (bedrooms + 1)
 House 10 = 1,229 sf, exemplar = 2,100 sf



Outcome #2: \$3,000 Cost Reduction

ZNE measures added to some costs, reduced others (selected features shown)

Feature	Before	After	Materials	Labor*
Framing	2x4 @ 16" o.c.	2x6 @ 24" o.c.		-\$300
Wall insulation	R-11	R-21		-\$100
Air leakage	4.75 ACH50	1.53 ACH50	+\$400	+\$800
HVAC	A/C + gas furnace	¾-ton mini-split		-\$2,000
Ducts	Standard	Compact	-\$100	-\$500
DHW dist'n	Standard	Compact	-\$70	-\$400
Lighting	50-50 CFL + incandescent	100% LED	+\$390	

Outcome #3: Near-ZNE Performance (using CA ZNE-TDV definition)

Outcome #4: 50% Lumber Savings Outcome #5: **Infiltration Reduced 68%** Outcome #6: **All Equipment Efficiencies Increased** Outcome #7: All Future Habitat-SJ Projects Will Include ZNE Feature Package 37

- Introduction
- Enclosure
- HVAC
- DHW & Other
- Outcomes
- Conclusions

Conclusions: ZNE Success Factors

Top-level organizational commitment

- Focus on integration and cross-trade synergies during design
- Instruction for all team members
 - Energy efficiency principles & practices (classroom)
 - Quality installation (hands-on demonstration)

High level of attention to detail

Throughout:

- Design
- Construction
- Commissioning

What's the Ideal Integrated Team? The fewest people with the required skills & attributes: commitment, creativity, experience, engagement

PLUMBING

MECHANICAL

ARCHITECTURE

INSULATION

ELECTRICAL

CA CONT

CONSTRUCTION MANAGEMENT

AIR SEALING