Optimizing Energy Design with Modeling Andy Shapiro Energy Balance, Inc. andy@energybalance.us

2/10/2009

Summary

Why bother?
Steps to optimize design
Modeling tools
Making sense of the data – the laugh test, the smell test, compare

Why Bother?

Create buildings with the lowest total cost –

- ownership cost
- operation cost
- maintenance cost.
- Minimize demand on the energy supply system
- Reduce global warming
- Decrease pollution

Why Bother?

Move toward buildings that improve, not deplete, the environment
Resource friendly
Safe, friendly and healthy for occupant and workers
Durable

CAREFUL, YOU MAY RUN OUT OF PLANET.

Too Typical:

Rule of thumb
How it was done the last time.

The result:

excess energy use
lack of comfort
poor indoor air quality
high O&M expenses

Steps to Optimizing Energy Design Set Goals Understand the building Whole Think: Building as a SYSTEM Choose the tools: Simpler first -more complex IF and when needed Evaluate the options – costs and benefits Optimization

Goals – Hard to get there without a map – Energy Goals

Energy Goals

Goals Metrics Systems

Energy Goals

Goal – Save energy
 Metrics – How do you know if you got to your goal?
 Systems

% reduction compared to code – cost or energy
Energy usage/demand limit
Energy cost limit
Carbon emissions limit
Net zero/zero carbon

Cost-effectiveness metrics

- Fixed Budget
- Cash flow
- Present value
- Payback or return on investment
- EVT screening tool

LEED metrics for energy
Vermont Builds Greener metrics
Vermont Energy Star Homes metrics
Federal tax credit metric

 Benchmark for tracking actual building energy use

Understand the Building – Model Inputs

 Look carefully at the loads in the building
 Who is doing What Where When?

Who:
 How many people in each area?

What:

What indoor climate conditions are required in each area?
What electrical loads are in each area – lights and other loads?

Where:

 Tabulate this information, by room number or zone.

When are how many people in what areas?
What loads are not coincident?

Tabulate a schedule.

Science Center Laboratory Occupancy OCCUPANCY SCHEDULES Total Building, with Diversity

Hour	5	6	7	8	9	10	11
Weekday Avg Occ.	1	1	5	32	32	41	42
Weekend Avg Occ.	1	1	6	6	6	7	7
Weekday Peak Occ.	1	1	8	52	52	54	55
Weekend Peak Occ.	0	0	11	11	11	11	11

- Evaluate the base-line building -- if using comparison to baseline in metrics
- Define a base-line building
 - lowest cost building that meets Vermont Energy code
 - ASHRAE 90.1 baseling
 - Efficiency VT baseline
 - LEED baseline
 - What the owner or architect brings to the table initially.

- Look carefully at outdoor design conditions
- Look carefully at indoor requirements

Tons of Cooling Required for 1000 cfm

Indoor Condition	Temp.	75 F	78F	
	RH	50%	50%	
Design condition	DB/WB			
Burlington				
Energy Code	84/69	1.9	1.6	
Typical	90/73	3.2	2.9	

Choosing the Tool(s)

- Match the tool to the need
 - Component analysis or whole building?
- How accurate do you need to be?
- How accurate can you AFFORD to be?

Choosing the Tool(s)

- Load models versus energy models
- For schematic design
 - Simple enough that you can afford to 'get it up' easily and do multiple runs to answer questions
- For design development
 - More detail may be required
- For verification, detailed enough to have a decent chance at accuracy

Choosing the Tool(s)

 The simplest tool that meets the need
 Example: Hand calculation of peak and annual ventilation loads, with and without energy recovery – create a simple spreadsheet

Tons of Cooling Required for 1000 cfm					
Indoor Condition	Temp.	Temp. 75 F			
	RH	50%	50%		
Design condition	DB/WB				
Burlington					
Energy Code	84/69	1.9	1.6		
Typical	90/73	3.2	2.9		

Residential Tools Spreadsheet – UA analysis REM-Rate Energy-10 Renewables – • PV-Watts RET-Screen

Residential Tools Spreadsheet – UA analysis Totally transparent Good for the laugh and smell tests Good for peak loads **Decent for annual loads** Demo?

Residential Tools REM-Rate – modified UA analysis Does a good job with solar and internal gains Good for peak loads and annual loads Vermont ENERGY STAR Homes compliance tool Tax credit compliance

Residential Tools REM-Rate – modified UA analysis Very easy to use Not totally transparent – (but you can find background) Licensed to accredited HERS providers, or provided as **REM/Design for \$277**

Quick Analysis

Energy	Surface Area	Compliance
--------	--------------	------------

⊢ Annual Load (MMBtu/vr)+					
Heating:	40.1				
Cooling:	0.0				
Water Heating:	16.5				
- Annual Consumption (MMBtu/vr)					
	Btu/yr				
Heating:	Btu/yr) 48.4				
Heating: Cooling:	48.4 0.0				

Annual Consumption (MMBtu/yr)				
Heating:	48.4			
Cooling:	0.0			
Water Heating:	21.7			
Lights and Appliances:	20.6			
Photovoltaics:	-0.0			
Total:	90.7			

Design Load (kBtu/hr)	
Heating:	24.0
Cooling:	0.0

X

Annual Energy Cost (\$/yr)			
Heating:	241		
Cooling:	0		
Water Heating:	109		
Lights and Appliances:	483		
Photovoltaics:	-0		
Service Charges:	120		
Total:	953		

Close

Print

Residential Tools

- Energy-10 8,760 hour simulation
 - As detailed as you want to get need to explore
 - Has a nice quick entry
 - Not transparent
 - Does a good job with solar and internal gains
 - Good for peak loads and annual loads

Residential Tools Energy-10 – 8,760 hour simulation Can get detailed output, including monthly Has a learning curve, but not steep or long A bit buggy Good for residential and commercial Cost \$375 Demo?

Renewable Tools

PV-Watts
On-line and easy to use
Monthly output

S: Vermont - Burlington - Mozilla Firefox

👿 4 Microsof... 🔻

History Bookmarks Tools Help

 History Bookmarks Tools Help

 Image: State of the state

Click on **Calculate** if default values are acceptable, or after selecting your system specifications. Click on **Help** for information about system specifications. To use a DC to AC derate factor other than the default, click on **Derate Factor Help** for information.

Station Identification:		
WBAN Number:	14742	
City:	Burlington	
State:	Vermont	

DC Rating (kW):	1
DC to AC Derate Factor:	0.77 DERATE FACTOR
Array Type:	Fixed Tilt
Fixed Tilt or 1-Axis Tracking System	n:
Array Tilt (degrees):	44.5 (Default = Latitude)
Array Azimuth (degrees):	180.0 (Default = South)
Energy Data:	
Cost of Electricity (cents/kWh):	Default = State Average

Microsoft Po...

😻 PVWATTS: V....

S 2, 4 6

📙 3 Adobe R... 🔻 🔣 9 Microsoft... 👻 🎒 Inbox for an...

S: AC Energy and Cost Savings - Mozilla Firefox

Station Identific	ation		Re	sults
City: State:	Burlington Vermont	Month	Solar Radiation (kWh/m ² /day)	AC Energy (kWh)
Latitude:	44.47° N	1	3.12	79
Longitude:	73.15° W	2	4.01	92
Elevation:	104 m	3	4.91	120
PV System Specifications		4	5.05	113
DC Rating:	1.0 kW	5	5.51	121
DC to AC Derate Factor:	0.770	6	5 42	114
AC Rating:	0.8 kW	7	5.47	117
Array Type:	Fixed Tilt	8	5.46	118
Array Tilt:	44.5°	9	4.70	101
Array Azimuth:	180.0°	10	3 79	87
Energy Specifications		11	2.37	54
Cost of Electricity:	12.9 ¢/kWh	12	2.15	52
		Year	4.33	1167

C) ET

Energy Value

(\$)

10.19

11.87 15.48

14.58

15.61

14.71

15.09

15.22

13.03

11.22

6.97

6.71

150.54

Renewable Tools RET Screen Free download Very easy to use (mondo Excel spreadsheet) Annual output Has economics module Demo?

Daylighting Tools
Energy-10
Skycalc (for skylights) -- free
Physical model
Radiance

SkyCalc: Skylight Design Assistant - Graphic Results

Company Name Company APC Inc

			E	ffec	tive	Аре	ertur	e = ´	1.11	%,	Sky	/ligh	t to	Floo	or Ra	atio (SFR	R) = 4	4.61	%				
							A	ver	age	day	ligh	t fo	otca	Indl	es (1	ic)								
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Jan	0	0	0	0	0	0	0	2	8	18	27	34	34	31	23	13	4	1	0	0	0	0	0	0
Feb	0	0	0	0	0	0	0	3	12	25	34	38	44	41	34	22	10	2	0	0	0	0	0	0
Mar	0	0	0	0	0	0	2	8	21	35	46	53	55	52	45	31	16	4	0	0	0	0	0	0
Apr	0	0	0	0	0	0	5	17	33	47	58	64	66	59	50	39	23	8	2	0	0	0	0	0
May	0	0	0	0	0	2	9	23	40	54	63	68	69	67	59	46	29	12	3	0	0	0	0	0
Jun	0	0	0	0	0	3	11	25	43	55	66	68	72	67	58	47	32	14	5	1	0	0	0	0
Jul	0	0	0	0	0	2	9	24	42	56	68	70	74	68	61	49	32	15	5	1	0	0	0	0
Aug	0	0	0	0	0	1	6	19	37	53	67	71	72	68	57	44	26	11	3	0	0	0	0	0
Sep	0	0	0	0	0	0	4	13	30	44	54	62	60	54	46	33	16	5	1	0	0	0	0	0
Oct	0	0	0	0	0	0	2	9	23	37	47	51	53	46	35	20	7	2	0	0	0	0	0	0
Nov	0	0	0	0	0	0	0	4	12	22	31	35	36	32	22	11	3	0	0	0	0	0	0	0
Dec	0	0	0	0	0	0	0	2	8	17	25	30	32	27	19	9	3	0	0	0	0	0	0	0

SkyCalc: Skylight Design Assistant - Tabular Results

Company Name: Company ABC, Inc. Project Description: Skylighting Project

Electric Lighting Usage Ltg. Energy without Skylights Lighting Energy w/ Skylights

kWh/yr
616,781
502,202

Lighting Fraction Saved Full daylighting (h/yr)

19% 1,135

Savings from Design Skylighting System							
		Annual Energy	Annual Cost				
Savings		Savings (kWh/yr)	Savings (\$/yr)				
Lighting		114,579	\$13,406				
Cooling		2,384	\$279				
Heating		-56,857	-\$1,180				
Total		60,106	\$12,505				
	Savin Savings Lighting Cooling Heating Total	SavingsSavingsLightingCoolingHeatingTotal	Savings from Design SkylightingSavingsAnnual EnergySavingsSavings (kWh/yr)Lighting114,579Cooling2,384Heating-56,857Total60,106				

Commercial Building Tools Spreadsheet -- souped up UA Bin analysis Energy-10 ♦ TRACE ♦ HAP EQuest

Commercial Tools Spreadsheet -- souped up UA Fast Transparent ♦ Flexible Get to make your own mistakes! You can sniff everything! ♦ demo

Commercial Tools Bin analysis Good for discrete loads where efficiency/load varies with outside temperature Example – average monthly efficiency of ASHP Demo?

Commercial Tools Energy-10 Very powerful Very easy to use Has some daylighting capability Great graphic output • EXCELLENT SCHEMATIC TOOL

Energy-10

Columbia Bank/Reduced IG / Columbia Bank/Preliminary Design

Commercial Tools • Energy-10 • Two zones max • Not a mechanical system design tool • Not a compliance tool **Commercial Tools** Energy-10 Glazing %'s Daylighting, first cut Insulation levels Air leakage Fuel choices Interactions of choices Demo?

Commercial Tools ◆ TRACE and HAP Equipment manufacturer's software Originally loads only, now energy also System design software Many zones possible Very detailed LEED compliance EVT savings calculations

Commercial Tools TRACE and HAP 8,760 hours or quasi-hourly Tricky to find all the details Steep, long learning curve Tends to include that manufacturer's equipment data Long run time for complex or manyzone buildings Expensive

Commercial Tools TRACE and HAP Tempting to use same tool for loads, energy design and compliance

YOU DON'T WANT 19 EXTRA HOURS OF THIS.

Commercial Tools EQuest User-friendly interface for DOE-2 Graphical input front end Two levels of wizards – schematic and design development

Free download

Commercial Tools EQuest Very detailed -- a lot of flexibility Many zones possible Generic equipment data LEED and EVT compliance Tricky to find all the details Long, steep learning curve User list serve

Making Sense Out of the Results ♦ SNIFF THE INPUTS !! Outside and inside design conditions W/sq.ft. lighting Plug loads Ventilation assumptions Numbers of people Controls selected

Making Sense Out of the Results

- Pose questions to be answered before choosing or running tool
- Do a rough approximation of savings prior to running an EEM
- Do measures individually first, SMELL, then run package
- interactive measures can be overstated 10-30% if not run interactively
 - Thanks to Marlin Addison

Making Sense Out of the Results

- Order in which interactive measures are run effects individual savings
- Present packages to the owners/design team

Use Parameters to Smell the Results
Design load or peak parameters
Peak heating load: Btu/sq.ft-hr or kW/sq.m
Peak cooling load: Sq.ft/ton of cooling
W/sq.ft. installed lighting

Use Parameters to Smell the Results

- Energy usage parameters \diamond Total energy use: Kwh/sq.m-year or Btu/sq.ft-yr Varies with building type.... CBECS numbers
 - Site versus source energy

Benchmark - 2003 CBECS1 National Average Source Energy Use										
	kBtu/sq.ft source	% electric	kBtu/sq.ft site							
Campus Level University	280	63%	120							
Restaurant/cafeteria	612	53%	302							

http://www.eia.doe.gov/emeu/cbecs/

National Average Source and Site Energy Use and Performance Comparisons by Building Type

Magnitude of Errors in Modeling

- +/- 7% best case with best input, best operator, checked against real building data
 - ~+/-20% is more typical and can be much worse

SNIFF THE INPUTS!
 SNIFF THE RESULTS!

SNIFF AGAIN!!!

Use Parameters to Smell the Results

Energy usage parameters
Heating Btu/sq.ft.-dday (kWh/sq.m-yr)
kWh/month electricity
Peak electric demand
Lighting kWh/sq.ft.-yr
% renewable (thermal and electric)

Look at End Use Loads to Smell the Results Look for the Big Numbers What are the big energy users? Ventilation? Windows? Envelope? Internal gains -- equipment or people? • Equipment efficiencies?

Sources of Errors in Modeling unfamiliar equipment controls not actually operating as modeled operations schedules equipment sizing issues Interactions Thanks again, Marlin!

Sources of Errors in Modeling

- air leakage rates
- actual equipment efficiencies vs. expected
- Unfamiliar variables (don't what they are talking about)
- Variables with unknown values (dirt factor on PV's, part load efficiencies)
 - Play with variable inputs to see what's important
Go Back and Look !!!

- Gather energy bill data and compare to model
 - weather, schedules, setpoints, occupancy levels, energy intensity of equipment, etc., etc., effect results
 - but at least LOOK
 - Fuel usage release form
 - The WMAP/Energy Balance Challenge!!

The WMAP/Energy Balance Challenge!!

Basic building dataTotal energy use

Optimizing Energy Design: Follow-up is Critical!

Track carefully through design process

Track carefully during construction!

Optimizing Energy Design with Modeling: Summary

- Set goals AND metrics
- Understand the Building:
 - Who is doing What When Where
 - Think whole-building/whole-system
- Choose tool to match the need
 - less = more
- Double check inputs LAUGH/SNIFF!
- Laugh/sniff the results !!
- Find critical loads
- Track through design and construction
- Go back and get energy bills

Thank you

